Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александрон инистерство науки и высшего образования Российской Федерации

Должность: И.О. Рестора Дата подписания: 28.07.2025 14:42:59 «Надиальное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет Уникальный программный ключ:

f17218015d82e3c1457d1df9e244def505047355 «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

greb parce 2025 r.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Технология электронной компонентной базы»

Направление подготовки - 11.04.04 «Электроника и наноэлектроника» Направленность (профиль) -«Материалы и технологии микро- и наноэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующей компетенции образовательной программы:

Компетенции ОП	Подкомпетенции, формируемые в дисциплине	Индикаторы достижения компетенций/подкомпетенций					
ОПК-2. Способен	ОПК-2.ТЭКБ	Знает основные технологические					
применять	Способен	процессы изготовления изделия					
современные	обоснованно	микроэлектроники;					
методы	выбирать	конструкции технологического					
исследования,	теоретические и	оборудования и методы формирования					
представлять и	экспериментальные	функциональных слоев и конструктивных					
аргументированно	методы исследования	элементов полупроводниковых приборов.					
защищать	элементов	Умеет выявить причины отклонений					
результаты	электронной	контролируемого параметра интегральной					
выполненной	компонентной базы	структуры от целевого значения и					
работы		предлагать решения, направленные на					
		устранение причин отклонения.					
		<i>Имеет опыт</i> анализа экспериментальных					
		данных в стандартном технологическом					
		процессе изготовления изделия					
		микроэлектроники.					

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине:

- знание основ проведения технологических операций создания кремниевых ИС;
- знание основных технологических маршрутов создания кремниевых ИС;
- знание основ цифровой и аналоговой схемотехники;
- знание основных этапов проектирования электронных устройствс использованием САПР;
 - знание компьютерных технологий в проектно-исследовательской деятельности.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

			(T	Ко	нтактная ра		я	
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
1	1	3	108	-	-	32	76	ЗаО

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конт	гактная	работа			
№ и наименование модуля	Лекции Практические занятия		Лабораторные работы (часы)	Самостоятельная работа	Формы текущего контроля	
1. Модели и параметры интегральных элементов	-	_	_	12	Краткое сообщение на практическом занятии	
2. Проектирование электронной компонентной базы	-	_	-	12	Краткое сообщение на практическом занятии	
3 .Тенденции и перспективы развития технологического базиса МОП - ИС.	-	4	_	12	Краткое сообщение на практическом занятии	
4. Основные конструктивные элементы биполярных и МОП - транзисторов ИС	_	4	_	12	Краткое сообщение на практическом занятии	
5 Анализ технологий СБИС	_	4	_	12	Краткое сообщение на практическом занятии	

6 Развитие техники проекционной фотолитографии	-	4	_	12	Краткое сообщение на практическом занятии
7 Современное состояние технологии многоуровневой металлизации СБИС	-	4	_	12	Краткое сообщение на практическом занятии
8 Базовые маршруты СБИС	_	4	_	12	Краткое сообщение на практическом занятии
9 Особенности современных СБИС	_	4	_	12	Краткое сообщение на практическом занятии
10 Перспективные технологии КМОП и БиКМОП СБИС	-	4	_	24	Краткое сообщение на практическом занятии Защита практического задания

4.1. Лекционные занятия

Не предусмотрены

4.2. Практические занятия

№ модуля дисциплины	№ практического	Объем занятий (часы)	Краткое содержание								
	1	2	Фундаментальные ограничения при миниатюризации ИС. Толщина								
2			подзатворного диэлектрика - одна из основных проблем дальнейшей миниатюризации МОП- транзистора.								
3	2	2	Ограничения миниатюризации МОП - транзистора, связанные с								
			областями стока/истока. Технологии формирования канала транзистора.								
	3	2	Высоколегированные области в биполярных и МОП транзисторах, скрытые слои, эпитаксиальные слои, поликремниевые затворы.								
4	4	2	Физические и конструктивные параметры диэлектрических слоев и их воспроизводимость. Конструктивные варианты изоляции активных элементов ИС.								
5	5	2	Интеграция технологических процессов. Воспроизводомость параметров технологических процессов. Межоперационный								
	6	2	контроль. Обеспечение высокого выхода годных. Проектные нормы как базовое понятие для характеристики уровня								
			технологии.								
6	7	2	Техника создания рисунка в функциональных слоях на основе проекционной фотолитографий. Материалы и последовательность								

			использования фотошаблонов.						
	8	2	Место жидкостной технохимии и плазменных процессов при						
			создании углублений в кремнии, рисунка в диэлектрических,						
			полупроводниковых и металлических слоях.						
	9	2	Принципы построения и классификация современных систем						
			металлизации СБИС. Вклад системы металлизации в параметры						
7			СБИС. Основные элементы систем металлизации.						
	10	2	Основные проблемы реализации многослойной системы						
			металлизации СБИС.						
8	11	2	Базовые маршруты изготовления КМОП СБИС.						
8	12	2	Базовые маршруты изготовления БиКМОП СБИС.						
9	13	2	Методология создания современных СБИС.						
9	14	2	Последовательность создания современных СБИС.						
10	15	2	Перспективные технологии КМОП СБИС.						
10	16	2	Перспективные технологии БиКМОП СБИС.						

4.3. Лабораторные работы

Не предусмотрены

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	12	Изучение материалов лекций. Подготовка к опросам
2	12	Изучение материалов лекций. Подготовка к опросам
3	12	Освоение теоретического материала. Подготовка к практическому
		занятию (выполнение ДЗ и подготовка краткого сообщения).
4	12	Освоение теоретического материала. Подготовка к практическому
		занятию (выполнение ДЗ и подготовка краткого сообщения).
5	12	Освоение теоретического материала. Подготовка к практическому
		занятию (выполнение ДЗ и подготовка краткого сообщения).
6	12	Освоение теоретического материала. Подготовка к практическому
		занятию (выполнение ДЗ и подготовка краткого сообщения).
7	12	Освоение теоретического материала. Подготовка к практическому
		занятию (выполнение ДЗ и подготовка краткого сообщения).
8	12	Освоение теоретического материала. Подготовка к практическому
		занятию (выполнение ДЗ и подготовка краткого сообщения).
9	12	Освоение теоретического материала. Подготовка к практическому
		занятию (выполнение ДЗ и подготовка краткого сообщения).
10	12	Освоение теоретического материала. Подготовка к практическому
		занятию (выполнение ДЗ и подготовка краткого сообщения).
	12	Выполнение практического задания

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Методические указания студентам по изучению дисциплины «Проектирование и технология электронной компонентной базы».

Модуль 1 «Модели и параметры интегральных элементов»

- ✓ Материалы для подготовки к опросам: Учебно-методическое пособие для самостоятельной работы студентов по дисциплине "Современные технологии проектирования элементов и устройств наноэлектроники"/ В.В. Лосев, А.А. Миндеева, Н.В. Гуминов; М-во образования и науки РФ, МИЭТ. М., 2011. 52 л.
- ✓ Учебно-методическая разработка для лабораторного практикума по курсу "Современные технологии проектирования элементов и устройств наноэлектроники " В.В. Лосев, А.А. Миндеева, Н.В. Гуминов; М-во образования и науки РФ, МИЭТ. М., 2011. 64 л.

Модуль 2 «Проектирование электронной компонентной базы»

✓ Материалы для подготовки к опросам: Учебно-методическая разработка для самостоятельной работы студентов по курсу "Микросхемотехника АИС"/ В. В. Лосев; Мво образования и науки РФ, МГИЭТ(ТУ). - М., 2007. - 113 л.

Модуль 3 «Тенденции и перспективы развития технологического базиса МОП - ИС»

✓ Материалы для подготовки краткого сообщения: перечень основной и дополнительной литературы

Модуль 4 «Основные конструктивные элементы биполярных и МОП - транзисторов ИС»

✓ Материалы для подготовки краткого сообщения: перечень основной и дополнительной литературы

Модуль 5 «Анализ технологий СБИС»

✓ Материалы для подготовки краткого сообщения: перечень основной и дополнительной литературы

Модуль 6 «Развитие техники проекционной фотолитографии»

✓ Материалы для подготовки краткого сообщения: перечень основной и дополнительной литературы

Модуль 7 «Современное состояние технологии многоуровневой металлизации СБИС»

✓ Материалы для подготовки краткого сообщения: перечень основной и дополнительной литературы

Модуль 8 «Базовые маршруты СБИС»

✓ Материалы для подготовки краткого сообщения: перечень основной и дополнительной литературы

Модуль 9 «Особенности современных СБИС»

✓ Материалы для подготовки краткого сообщения: перечень основной и дополнительной литературы

Модуль 10 «Перспективные технологии КМОП и БиКМОП СБИС»

✓ Материалы для подготовки краткого сообщения: перечень основной и дополнительной литературы

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Опадчий Ю.Ф. Аналоговая и цифровая электроника (Полный курс): Учебник для вузов / Ю.Ф. Опадчий, О.П. Глудкин, А.И. Гуров; Под ред. О.П. Глудкина. М. : Горячая линия-Телеком, 2005. 768 с.
- 2. Алексенко А.Г. Основы микросхемотехники / А.Г. Алексенко. 3-е изд., перераб. и доп. М.: Лаборатория Базовых знаний. Физматлит: Юнимедиастайл, 2002. 448 с.
- 3. Королев М.А. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: Учеб. пособие: В 2-х ч. Ч. 2 : Элементы и маршруты изготовления кремниевых ИС и методы их математического моделирования / М.А. Королев, [и др.]; Под ред. Ю.А. Чаплыгина. М. : Бином. Лаборатория знаний, 2009. 422 с.
- 4. Металлизация ультрабольших интегральных схем: Учеб. пособие / Д.Г. Громов [и др.]; Под ред. Ю.А. Чаплыгина. М.: БИНОМ. Лаборатория знаний, 2009. 277 с.
- 5. Путря М.Г. Плазменные методы формирования трехмерных структур УБИС [Текст] : Учеб. пособие / М.Г. Путря. М. : МИЭТ, 2005. 128 с.
- 6. Шишина Л.Ю. Элементная база биполярных цифровых ИС: Конспект лекций по курсу "Элементная база БИС" / Л.Ю. Шишина. М.: МИЭТ, 1998. 116 с.

Периодические издания

- 1. RUSSIANMICROELECTRONICS. : Springer, [2000] . URL: http://link.springer.com/journal/11180 (дата обращения: 30.02.2025). Режим доступа: для авториз. пользователей МИЭТ
- 2. Известия вузов. Электроника: Научно-технический журнал / М-во образования и науки РФ; МИЭТ; Гл. ред. Ю.А. Чаплыгин. М.: МИЭТ, 1996 .
- 3. IEEE Transactions on Electron Devices. USA : IEEE, [б.г.]. URL: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=16 (дата обращения: 14. 02.2025). Режим доступа: по подписке МИЭТ
- 4. Электроника: Наука. Технология. Бизнес: Научно-технический журнал / Издается при поддержке Российского агентства по системам управления. М.: Техносфера, 1996 .

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU : Научная электронная библиотека : сайт. Москва, 2000 . URL: https://elibrary.ru/defaultx.asp (дата обращения: 30.02.2025). Режим доступа: для зарегистрир. Пользователей
- 2. SCOPUS : Библиографическая и реферативная база данных научной периодики : сайт. URL: www.scopus.com/ (дата обращения: 30.02.2025). Режим доступа: для авториз. пользователей МИЭТ

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используются смешанное обучение, сочетающее традиционные формы аудиторных занятий и взаимодействие в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС(http://orioks.miet.ru).

В ходе реализации обучения используется также «расширенная виртуальная модель», которая предполагает обязательное присутствие студентов на очных учебных занятиях или онлайн-занятиях, на которых проводится разбор нового материала, консультирование и опрос по результатам выполнения самостоятельной работы. Самостоятельная работа студентов включает работу с использованием онлайн-ресурсов, в т.ч. для организации обратной связи с обсуждением, консультированием, с последующей доработкой и подведением итогов.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Новости», «Домашние задания», электронная почта.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения		
Учебная аудитории	Мультимедийное оборудование	OC Microsoft Windows		
		Microsoft Office		
Помещение для	Компьютерная техника с	OC Microsoft Windows		
самостоятельной работы	возможностью подключения к	Microsoft Office		
	сети «Интернет» и обеспечением	Professional Plus		
	доступа в электронную	браузер		
	информационно-образовательную	Acrobat reader DC		
	среду МИЭТ			

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

ФОС по подкомпетенции ОПК-2.ТЭКБ Способен обоснованно выбирать теоретические и экспериментальные методы исследования элементов электронной компонентной базы.

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины в электронной информационной образовательной среды ОРИОКС// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

В процессе обучения студенты должны осуществить поиск дополнительной информации по темам семинаров в научных источниках (рекомендованных ПБД и ИСС) с последующим обсуждением результатов поиска с преподавателем и одногруппниками.

Во время самостоятельной работы студенты готовятся к практическим занятиям и выполняют домашнее индивидуальное задание. Контроль выполнения студентами индивидуального задания проводится на семинарах. Студенты выступают с докладами на семинарах, излагая содержание проделанной работы, анализируя различные аспекты освещаемой проблемы, происходит обсуждение информации в формате научной дискуссии.

Помимо предложенной учебной литературы, для подготовки к практическим занятиям и выполнения индивидуального задания нужно использовать внешние электронные ресурсы, ссылки на которые размещены в корпоративной информационнотехнологической платформе ОРИОКС.

Выполнение практического задания предполагает формирование у обучающихся по индикаторам умений и приобретения опыта деятельности.

Наиболее сложные и проблемные вопросы курса могут быть разъяснены обучающимся во время очных консультаций и дистанционных консультаций с использованием современных коммуникационных платформ и электронной почты.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система.

Баллами оцениваются: результаты работы на практических занятиях (до 70 баллов), выполнение практического задания (до 10 баллов) и на промежуточной аттестации (до 20 баллов). По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в ОРИОКС, http://orioks.miet.ru/.

Разработчик:

Профессор Института ПМТ, д.т.н.

/Д.Г.Громов /

Рабочая программа дисциплины «Технология электронной компонентной базы» по направлению подготовки 11.04.04 «Электроника и наноэлектроника», направленности (профилю) «Материалы и технологии микро- и наноэлектроники» разработана в Институте ПМТ и утверждена на заседании Ученого совета Института 28 февраля 2025 года, протокол № 18

Директор Института

С.В. Дубков/

лист согласования

Рабочая	программа	согласована	C	Центром	подготовки	K	аккредитации	И	независимой
оценки к	сачества			11					
Начальн	ик АНОК					/И	.М. Никулина /		

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки ________/Т.П. Филиппова /