Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александрови Министерство науки и высшего образования Российской Федерации

Должность: И.О. Ректора Должно

Уникальный программный ключ:

«Национальный исследовательский университет

f17218015d82e3c1457d1df9e244def505047355

«Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г.Балашов

Les grebraille 2025 F.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Основы технологии одномерных структур»

Направление подготовки - 11.04.04 «Электроника и наноэлектроника» Направленность (профиль) – «Материалы и технологии микро- и наноэлектроники»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-2 «Способен разрабатывать процессы жизненного цикла изделий микро- и наноэлектроники» **сформулирована на основе профессиональных стандартов:**

40.005 «Инженер-технолог по производству изделий микроэлектроники» **Обобщенная трудовая функция** С[7] Процессы жизненного цикла продукции

Трудовая функция С/**02.7** Планирование разработки продукции в части, касающейся контроля, измерения свойств и испытания основных, вспомогательных и расходных материалов, а также их разработки и выбора

С/08.7 Разработка и внедрение новых методик контроля, измерения и испытания, а также разработки и выбора материалов

40.006 «Инженер-технолог в области производства наноразмерных полупроводниковых приборов и интегральных схем»

Обобщенная трудовая функцияВ[7]Разработка и внедрение современных технологических процессов, освоение нового оборудования, технологической оснастки, необходимых режимов производства на выпускаемую организацией продукцию

Трудовыефункции В/01.7 Разработка технологических процессов и внедрение их в производство

В/02.7 Оптимизация параметров технологических операций

В/03.7 Освоение и внедрение технологических процессов и необходимых режимов производства на выпускаемую продукцию

В/04.7Экспериментальные работы и освоение новых технологических процессов

В/05.7Экспериментальные работы и освоение нового оборудования и технологической оснастки

В/06.7Экспериментальные работы по освоению новых технологических процессов, новых видов оборудования и технологической оснастки

Подкомпетенции, формируемые в	Задачи профессиональной	Индикаторы достижения подкомпетенций
дисциплине	деятельности	подкомпетенции
ПК-2.ОТОС	Научно-	Знание методов синтеза и
Способен	исследовательский тип	диагностики одномерных структур,
выбирать методы	задач:	их перспективных свойств и
создания,	- Сбор и сравнительный	областей применения
контроля и	анализ данных о	Умение осуществлять подготовку
измерения	существующих типах и	образцов одномерных структур к
свойств	марках материалов, их	исследованиям, выбор оптимальных
одномерных	структуре и свойствах,	параметров исследования образцов и
структур	способах разработки	обработки данных для анализа
	новых материалов с	результатов исследований
	заданными	Практический опыт
	технологическими и	- Выбирает, планирует и участвует в
	функциональными	разработке новых методик контроля

свойствами	и измерения свойств
применительно к	наноматериалов.
решению поставленных	- использует физико-химический
задач с использованием	подход для описания, анализа и
баз данных и	моделирования процессов синтеза
литературных источников	наноматериалов

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений, Блока 1 «Дисциплины (модули)» образовательной программы, является элективной.

Входные требования к дисциплине:

Изучение данной дисциплины базируется назнаниях, приобретенных студентами при изучении дисциплин бакалавриата — «Физико - химия наноструктурированных материалов», «Методы исследования материалов и структур». Формируемые в процессе изучения дисциплины компетенции в дальнейшем углубляются выполнением индивидуальных заданий НИР и служат основой для выполнения выпускной квалификационной работы (ВКР).

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		(3E)		Конт	гактная ра	бота	В1	Ħ
Курс	Семестр	Общая трудоёмкость (З	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельна работа (часы)	Промежуточная аттестация
2	3	4	144	6	8	18	76	Экз(36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа			ая	
№ и наименование модуля	Лекции	Практические занятия	Лабораторные работы	Самостоятельн	Формы текущего контроля
1. Общие представления об одномерных структурах	2	4	0	13	Защита индивидуальных заданий

2. Теоретические основы создания одномерных структур	2	6	8	17	Рубежный контроль (тестирование) Защиты лабораторных работ 1,2
3. Теоретические основы исследования одномерных структур	0	4	0	20	Сдача расчетного задания
4. Примеры реализации одномерных структур	2	4	0	26	Защита индивидуальных заданий Опрос

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
1	1	2	Общие представления об одномерных структурах. Типы и материалы
			одномерных структур, электрические и физические свойства
			одномерных структур, методы их изготовления.
2	2	2	Обзор современных подходов к получению одномерных структур.
			Формирование одномерных наноструктур по механизмам ПЖК и ПКК.
3	3	2	Общие представления об устройствах на основе одномерных структур,
			методах их изготовления, принципах работы, физических законов, на
			основе которых работают устройства.

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия
	1	2	Классификация наноматериалов. Одномерные структуры. Свойства
1	1		одномерных структур.
	2 2		Свойства одномерных структур.
2	3 2 Механизмы роста одномерных структур.		Механизмы роста одномерных структур.
2	4-5	4	Методы формирования одномерных структур
	6 2 Методы исследования одномерных структур.		Методы исследования одномерных структур.
3	7	2	Статистический анализ морфологии одномерных структур методом
	,		растровой электронной микроскопии с использованием

			программного обеспечения Гіјі.
4	8-9	4	Устройства на основе одномерных структур

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
2	1	4	Исследование кинетики осаждения нанокристаллического оксида цинка
			из водных растворов.
2	2	4	Исследование кинетики осаждения углеродных нанотрубок из газовой
			фазы.

4.4. Самостоятельная работа студентов

		- v			
№ модуля дисциплины	Объем занятий (часы)	Вид СРС			
1-4	8	Самостоятельная доработка конспекта лекции с применением учебного			
		пособия и дополнительной литературы			
1-4	36	Подготовка к семинарам. Выполнение индивидуальных заданий			
		(подготовка докладов)			
3-4	7	Подготовка к опросу.			
1-2	7	Подготовка к рубежному контролю			
1-2	12	Подготовка к лабораторным работам.			
3	6	Выполнение расчетного задания			

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Все материалы для подготовки к практическим занятиям и выполнению **БДЗ** представлены в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/)

Модуль 1 «Общие представления об одномерных структурах»

✓ Материалы для изучения теории в рамках подготовки к практическим занятиям и лабораторным занятиям, проработки лекций и подготовки к опросу.

Модуль 2 «Теоретические основы создания одномерных структур»

✓ Материалы для изучения теории в рамках подготовки к практическим занятиям и лабораторным занятиям, проработки лекций и подготовки к опросу.

Модуль 3 «Теоретические основы исследования одномерных структур»

✓ Материалы для изучения теории в рамках подготовки к практическим занятиям и лабораторным занятиям, проработки лекций и подготовки к опросу.

Модуль 4 «Примеры реализации одномерных структур»

✓ Материалы для изучения теории в рамках подготовки к практическим занятиям и лабораторным занятиям, проработки лекций и подготовки к опросу.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Технология материалов микро-, опто- и наноэлектроники [Текст] : Учеб. пособие. Ч. 2 / В. М. Рощин, М. В. Силибин. М. : БИНОМ. Лаборатория знаний, 2010. 184 с. Изд. выполнено в рамках инновац. образоват. программы МИЭТ "Соврем. проф. образование для рос. инновац. системы в области электроники". ISBN 978-5-94774-913-7; ISBN 978-5-94774-910-6.
- 2. Технология материалов микро-, опто- и наноэлектроники [Текст] : Учеб. пособие. Ч. 1 / А. А. Раскин, В. К. Прокофьева. М. : БИНОМ. Лаборатория знаний, 2010. 168 с. Изд. выполнено в рамках инновац. образоват. программы МИЭТ "Соврем. проф. образование для рос. инновац. системы в области электроники".
- 3. One-Dimensional Nanostructures [Электронныйресурс] / Wang Z. M., ed. : Springer, 2008. (Lecture Notes in Nanoscale Science and Technology. Volume 3). URL : http://link.springer.com/book/10.1007/978-0-387-74132-1 (датаобращения: 10.02.2025). ISBN 978-0-387-74131-4 (Print); 978-0-387-74132-1 (Online).
- 4. Springer Handbook of Nanotechnology / Bharat Bhushan, ed. : Springer, 2010. URL : http://link.springer.com/book/10.1007/978-3-642-02525-9 (дата обращения: 10.02.2025)
- 5. Электронные свойства и применение нанотрубок/ П.Н. Дьячков. 3-е изд., электронное. М. : Бином. Лаборатория знаний, 2015. 491 с. (Нанотехнологии). URL: https://e.lanbook.com/book/66217 (дата обращения: 11.02.2025). ISBN 978-5-9963-2639-6.
- 6. Schaefer H.-E. Nanoscience: The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine / Schaefer H.-E. : Springer, 2010. URL : http://link.springer.com/book/10.1007/978-3-642-10559-3 (дата обращения: 11.02.2025).

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХБАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. eLIBRARY.RU: научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru(дата обращения: 10.02.2025). Режим доступа: для зарегистрированных пользователей.
- 2. SCOPUS: Библиографическая и реферативная база данных научной периодики: сайт. URL: www.scopus.com/ (дата обращения: 20.01.2025). Режим доступа: для авториз. пользователей МИЭТ

- 3. Web of Science:[наукометрическая база данных]: сайт. URL: http://apps.webofknowledge.com (дата обращения: 20.01.2025). Режим доступа: для зарегистрир. пользователей.
- 4. Федеральный институт промышленной собственности. URL: https://new.fips.ru/about/ (дата обращения: 20.01.2025).

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Контроль освоения образовательной программы обеспечивается электронным тестированием в ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Компьютер с возможностью	OC Windows
	подключения к сети Интернет и	MS Office
	обеспечением доступа в электронную информационно-образовательную среду МИЭТ, мультимедийное оборудование Автоматизированный комплекс нанесения материалов атомнослоевым осаждением KSV Dip Coater Весы OXAUS Model PA 214 С Термостатжидкостной Lauda model Alpha	браузер
Помещение для	Компьютерная техника с	OC Microsoft Widows
самостоятельной работы	возможностью подключения к сети	7,
	«Интернет» и обеспечением доступа в	MS Office
	электронную информационно-	браузер
	образовательную среду МИЭТ	

10. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ПК-2.ОТОС** Способен выбирать методы создания, контроля и измерения свойств одномерных структур.

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

В учебной программе дисциплины предусмотрено 4 модуля. В ходе изучения первого модуля «Общие представления об одномерных структурах» студенты изучают перспективные свойства одномерных структур, приходят к пониманию актуальности разработки процессов их формирования и встраивания в технологию создания электронных устройств. Модули 2,3 «Теоретические основы создания одномерных структур» и «Теоретические основы исследования одномерных структур» дают представление о методах формирования и диагностики одномерных структур. Модуль 4 «Примеры реализации одномерных структур» является заключающим. Студенты знакомятся с областями применения одномерных структур в электронике, учатся устанавливать взаимосвязь между свойствами наноструктур и характеристиками приборов на их основе, изучают конструкционные решения по оптимизации функциональных слоев на основе одномерных структур.

Самостоятельная работа студентов направлена на предварительную подготовку к практическим занятиям: подготовка к лабораторным работам и проработка теоретического материала для семинарских занятий, выполнение индивидуальных заданий СРС.

Контроль выполнения студентами индивидуального задания проводится на семинарах. Студенты выступают с докладом на семинаре, излагая содержание проделанной работы, анализируя различные аспекты освещаемой проблемы, происходит обсуждение информации в формате научной дискуссии.

11.2. Система контроля и оценивания

По завершению изучения дисциплины предусмотрен *экзамен*, при этом оценка итогов учебной деятельности студента основана на накопительно – балльной системе. Для сдачи экзамена по дисциплине разработан ФОС, включающий комплексное задание по проверке сформированности подкомпетенции с методическими указаниями по их выполнению и критериями оценки.

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/

Получение минимальных баллов по всем контрольным мероприятиям в течение семестра обязательно.

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка		
Менее 50	2		
50 – 70	3		
71 – 85	4		
86 – 100	5		

Разработчики:

Доцент Института ПМТ, к.т.н

Ст. преподаватель Института ПМТ

А.А.Дронов

Ю.В.Назаркина

Рабочая программа дисциплины «Основы технологии одномерных структур» по направлению подготовки 11.04.04 «Электроника и наноэлектроника», направленности (профилю) «Материалы и технологии микро- и наноэлектроники» разработана в Институте ПМТ и утверждена на заседании Ученого совета Института 28 февраля 2025 года, протокол № 18

Директор Института ПМТ

С.В.Дубков/

Лист согласования

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК

___/И.М.Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

фи /Т.П.Филиппова/