Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александрович

Должность: И.О. Ректора

Дата подписания: 19.09.2025 09:37:09

Уникальный программный ключ: Министерство науки и высшего образования Российской Федерации

f17218015d82e3c1457d1df9e244def505047355 Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

Стана В В В Семра 2025г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Встраиваемые системы реального времени для телекоммуникационных систем»

Направление подготовки - 11.04.02 «Инфокоммуникационные технологии и системы связи»

Направленность (профиль) - «Информационные сети и телекоммуникации»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-1 «Способен планировать и осуществлять научноисследовательскую деятельность в области разработки инновационных радиоэлектронных средств» **сформулирована на основе профессионального стандарта - 06.048** «Инженеррадиоэлектронщик в области радиотехники и телекоммуникаций»

Обобщенная трудовая функция G Проведение научно-исследовательских работ по разработке инновационных радиоэлектронных средств различного назначения

Трудовая функция G/03.7 Математическое и компьютерное моделирование составных частей радиоэлектронных средств

Подкомпетенции,	Задачи	Индикаторы достижения
формируемые в	профессиональной	подкомпетенций
дисциплине	деятельности	
ПК-1.ВСРВ	Разработка	Знания: терминологии и
Способен к разработке и	математических и	архитектуры встраиваемых систем
анализу вариантов	физических моделей	реального времени на базе ЦСП
встраиваемых систем	радиоэлектронных	для ЦОС в ТКС., алгоритмов
реального времени для	средств; компьютерное	обработки сигналов в них.
телекоммуникационных	моделирование	Умения: использовать
систем.	радиоэлектронных	полученные знания при
	средств на	построении встраиваемых систем
	схемотехническом и	реального времени для ЦОС.
	системотехническом	Опыт деятельности: в разработке
	уровнях; разработка	и отладке основных узлов ВСРВ
	специальных	на базе ЦСП с использованием
	программных средств	предназначенного для этого
	моделирования; отладка	современного инструментария
	специальных	
	программных средств	
	моделирования	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы (является элективной).

Входными требованиями к дисциплине являются знания алгоритмов цифровой обработки сигналов (ЦОС), основ программирования, основ цифровой схемотехники, схемотехники телекоммуникационных устройств, принципов цифро-аналогового и аналогоцифрового преобразования.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

			Кон	тактная ра	бота		
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
2	3	144	-	16	32	60	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа					
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля	
1. Введение в теорию						
построения						
встраиваемых систем	-	-	4	4	Письменный опрос	
ЦОСреального						
времени						
2.Программное и					Защита проектно-	
аппаратное					-	
обеспечение	-	-	28	40	ориентированного	
встраиваемых систем					домашнего задания	
реального времени					Письменный опрос	
3. Примеры реализации						
алгоритмов ЦОС в		16		16	Payyyra nakanamanyy w nakan	
цифровых сигнальных		10	-	10	Защита лабораторных работ	
процессорах (ЦСП)						

4.1. Лекционные занятия

Не предусмотрены

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия
1	1,2	4	Введение в теорию построения встраиваемых систем ЦОС реального
			времени
	3,4	4	Архитектура ЦСП. Вычислительные устройства ЦСП.
	5,6	4	Система памяти ЦСП. Прямой доступ в память.
	7,8	4	Организация прерываний в ЦСП.
	9, 10	4	Методы адресации в ЦСП. Устройства генерации адреса.
2			Организация циклических буферов.
2	11,12	4	Распределение ресурсов и оптимизация кодов при реализации систем
-			ЦОС на базе ЦСП.
	13,14	4	Методы разработки и отладки встраиваемых систем ЦОС на базе
			ЦСП.
	15,16	4	Защита проектно-ориентированного домашнего задания.

4.3. Лабораторные работы

№ модуля дисциплины	№лабораторной работы	Объем занятий (часы)	Наименование работы		
3	1	4	Ознакомление с циклом разработки программного обеспечения для		
			сигнального процессора ADSP-BF537 Blackfin. Приобретение		
			начальных навыков работы с аппаратными и программными		
			средствами отладочной платы ADSP-BF537 EZ-KIT LITE в		
			графической среде разработки VisualDSP++.		
3	2	4	Изучение работы прерывания, флагов общего назначения и режима		
			пониженного потребления процессора Blackfin-537. Работа с часами		
			реального времени.		
3	3	4	Изучение работы синхронного последовательного порта ЦСП ADSP-		
			BF537 с аудиокодаками и режима прямого доступа в память на		
			отладочной плате ADSP-BF537 EZ-KIT LITE.		

3	4	4	Реализация КИХ-фильтра на базе отладочного модуля ADSP-BF537
			EZ-KIT LITE.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объемзанятий (часы)	Вид СРС
1	2	Подготовка к практическим занятиям
1	2	Подготовка к письменному опросу по теории
	2	Подготовка к письменному опросу по теории
2	8	Подготовка к практическим занятиям
	30	Выполнение проектно-ориентированного домашнего задания
3	8	Подготовка к лабораторным работам 1-4: изучение методических
	O	пособий по лабораторным работам.
	8	Подготовка к защите лабораторных работ 1 -4.

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, https://orioks.miet.ru/moodle/course/):

Модуль 1. Введение в теорию построения встраиваемых систем ЦОС реального времени

- материалы для подготовки к практическим занятиям: тексты семинаров, презентации семинаров, материалы курса в Moodle
- материалы и учебная литература по дисциплине для подготовки к письменному опросу **Модуль 2.** Программное и аппаратное обеспечение встраиваемых систем реального времени
 - материалы и учебная литература по дисциплине для подготовки к письменному опросу
 - материалы для подготовки к практическим занятиям: тексты семинаров, презентации семинаров, материалы курса в Moodle
 - материалы для выполнения проектно-ориентированного домашнего задания

Модуль 3. Примеры реализации алгоритмов ЦОС в цифровых сигнальных процессорах (ЦСП)

 материалы для подготовки к лабораторным работам №1-4: методические пособия по лабораторным работам курса

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Солонина А.И. Алгоритмы и процессоры цифровой обработки сигналов : Учеб. пособие / А.И. Солонина, Д.А. Улахович, Л.А. Яковлев. СПб. : БХВ-Петербург, 2002. 454 с.
- 2. Смит С. Цифровая обработка сигналов. Практическое руководство для инженеров и научных работников : Пер. с англ.. М. : ДОДЭКА-ХХІ, 2011. 720 с. URL: https://e.lanbook.com/book/60986 (дата обращения: 10.09.2024). ISBN 978-5-94120-145-7.
- 3. Плетнева И.Д. Проектирование встроенных систем ЦОС для телекоммуникаций: Учеб. пособие по курсовому проектированию М.: МИЭТ, 2011. 132 с.- ISBN 978-5-7256-0627-0.
- 4. Филимонов, В. А. Теория электрической связи через цифровую обработку сигналов с примерами в MATLAB: учебное пособие / В. А. Филимонов. Москва; Вологда: Инфра-Инженерия, 2022. 780 с. URL: https://znanium.com/catalog/product/1902697 (дата обращения: 10.09.2024). ISBN 978-5-9729-0820-2. Текст: электронный.
- 5. Давыдкин, М. Н. Программирование микроконтроллеров : методические указания / М. Н. Давыдкин. Москва : МИСИС, 2022. 176 с. URL: https://profspo.ru/books/129754 (дата обращения: 09.09.2024). Текст : электронный.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. ФГУП ВНИИФТРИ: научно-исследовательский институт физико-технических и радиотехнических измерений: сайт. URL: http://www.vniiftri.ru (дата обращения: 10.09.2024). Режим доступа: свободный.
- 2. eLIBRARY.RU: Научная электронная библиотека: сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 10.09.2024). Режим доступа: для зарегистрированных пользователей.
- 3. AnalogDevices: сайт. https://www.analog.com/ru (дата обращения: 10.09.2024). Режим доступа: свободный.
- 4. IEEE/IET ElectronicLibrary (IEL) [Электронный ресурс] = IEEE Xplore : Электронная библиотека. USA ; UK, 1998. URL: https://ieeexplore.ieee.org/Xplore/home.jsp (дата обращения 10.09.2024). Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта "Национальная подписка"
- 5. Международный союз электросвязи: сайт. URL: https://www.itu.int/ru/Pages/default.aspx (дата обращения: 10.09.2024)
- 6. The 3rd Generation Partnership Project (3GPP): сайт. URL: https://www.3gpp.org/ (дата обращения: 10.09.2024)

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, основанное на интеграции технологий традиционного и электронного обучения, замещении части

традиционных учебных форм занятий формами и видами взаимодействия в электронной образовательной среде ОРИОКС.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС:

Лекции по дисциплине «Встраиваемые системы реального времени для телекоммуникационных систем» (ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем») 2020 г.

Методические пособия по лабораторным работам 1-4 (ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем»), 2020 г.

EmbeddedMediaProcessing, Chapters 1, 2, 5, (ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем»)

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», чат в Moodle ОРИОКС.

В процессе обучения при проведении занятий и для самостоятельной работы используются **внутренние электронные ресурсы** в формах видеоконференций, электронных материалов в MOODLe, тестирования в OPИОКС и MOODLe.

При проведении занятий и для самостоятельной работы используются внешние электронные компоненты сервисов:

- 1. Blackfin Processors: Manuals // Analog Devices архив [сайт]. 2024. URL: https://docs.ampnuts.ru/analog.com.datasheet/ (дата обращения: 25.08.2025)
- 2. Youtube

Мастер-класс "Начало работы с VisualDSP++" (части 1, 2)

 $https://www.youtube.com/watch?v=_zCW6DvIKQ0&t=5s(дата обращения: 25.08.2025, режим доступа: из сети Университета)$

https://www.youtube.com/watch?v=kB1KdBeN-go&t=5s (дата обращения: 25.08.2025, режим доступа: из сети Университета)

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Наименование учебных аудиторий и помещений для самостоятельной работы
Компьютерный класс	Компьютеры, Отладочные модули ADSP- BF537 EZ-KITLITE. Контрольно-измерительные приборы (осциллографы,	Интегрированная среда разработки VisualDSP++, MATLAB.

генераторы низких частот	
Γ3-121)	

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ПК-1.ВСРВ** «Способен к разработке и анализу вариантов встраиваемых систем реального времени для телекоммуникационных системах»

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем»: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Практические занятияпроводятся в мультимедийной аудитории в виде презентаций и обсуждения контрольных вопросов.

По окончании изучения теоретического материала модулей 1 и 2проводится оценка полученных студентами знаний в виде письменных опросов по теории (ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем» Письменный опрос https://orioks.miet.ru/moodle/course/view.php?id=357#section-4).

Выполнение лабораторных работ являются обязательными и напрямую влияют на итоговую оценку студента.

Подготовка к лабораторным работам предполагает изучение методических пособий по лабораторным работам в ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем» https://orioks.miet.ru/moodle/course/view.php?id=357#section-3.

Для этого предусмотренычасы СРС.

Оценка знаний и умений, полученных в результате выполнения лабораторных работ, осуществляется при их защите. Защита лабораторных работ проводится в виде контроля индивидуальных заданий, выполненных студентом самостоятельно после выполнения лабораторного задания, и в виде тестов в ОРИОКС.

В дисциплине предусмотрено выполнение проектно-ориентированного задания, направленного на приобретение опыта деятельности в реализации простейших систем ЦОС для телекоммуникаций на базе ЦСП. Индивидуальное задание для выполнения проектно-ориентированного задания студент может получить в любой момент (см. ОРИОКС, Moodle, дисциплина «Встраиваемые системы реального времени для телекоммуникационных систем») https://orioks.miet.ru/moodle/course/view.php?id=357#section-4), но необходимый объём знаний для выполнения будет сформирован только после 4-го практического занятия и выполнения ЛР№3.

Для защиты проектно-ориентированного задания студент должен:

- представить пояснительную записку, содержащую:
 - а)краткое описание используемого устройства внешней периферии;
 - б) схему электрическую интерфейса ЦСП с периферийным устройством согласно заданию;
 - в) временную диаграмму обмена данными между ЦСП и устройством внешней периферии
 - г) обоснование выбора временных параметров обмена данными между заданными устройствами;
 - уметь ответить на вопросы преподавателя в рамках задания.

Формирование итоговой оценки производится согласно разделу 11.2.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме максимум 70 баллов) и сдача экзамена (максимум 30 баллов). По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий приведены ниже в таблице (см. также журнал успеваемости на ОРИОКС, http://orioks.miet.ru/).

Мониторинг успеваемости студентов проводится в течение семестра после окончания каждого контрольного мероприятия (одна неделя после окончания контрольного мероприятия дается на формирование, проверку, получение и исправление комментариев к выполненной работе).

РАЗРАБОТЧИКИ:

Доцент кафедры ТКС, к.т.н.

6/1

/А.Г. Тимошенко/

Рабочая программа дисциплины «Встраиваемые системы реального времени для телекоммуникационных систем» по направлению подготовки 11.04.02 «Инфокоммуникационные технологии и системы связи», направленности (профилю) «Информационные сети и телекоммуникации» разработана на кафедре ТКС и утверждена на заседании кафедры 29.08.2025 года, протокол № 1

Заведующий кафедрой ТКС

/А.А. Бахтин/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оцен	нки
качества	
Начальник АНОК/ И.М.Никулина /	
Рабочая программа согласована с библиотекой МИЭТ	
To the second second	