Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гаврилов Сергей Александрович

Должность: И.О. Ректора Дата подписания: 19.09.2025 09:3 Министерство науки и высшего образования Российской Федерации

уникальный програждение высшего образования

f17218015d82e3c1457d1df9e244def50504735 ік Национальный исследовательский университет

«Московский институт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

Centralpt 2025 r.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Архитектура аналого-цифровых и цифро-аналоговых преобразователей»

Направление подготовки - 11.04.02 «Инфокоммуникационные технологии и системы связи»

Направленность (профиль) - «Информационные сети и телекоммуникации»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК- 1 «Способен планировать и осуществлять научноисследовательскую деятельность в области разработки инновационных радиоэлектронных средств» **сформулирована на основе профессионального стандарта 06.048** «Инженеррадиоэлектронщик в области радиотехники и телекоммуникаций»

Обобщенная трудовая функция G Проведение научно-исследовательских работ по разработке инновационных радиоэлектронных средств различного назначения

Трудовая функция G/01.7 Выполнение организационно-технических мероприятий на начальном этапе научно-исследовательских работ

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-1.ААЦПиЦАП	Анализ требований	Знания: основных
Способен использовать	технического задания, оценка	параметров АЦП и ЦАП,
методы проведения	существующих технических	основных архитектур АЦП и
теоретических и	решений, поиск	ЦАП, основных параметров
экспериментальных	инновационных методов	сенсоров и компонентов
исследований в	обработки сигналов и	систем обработки сенсорных
научно-	принципов построения	данных.
исследовательских	аппаратных средств;	Умения: применять методы
работах в области	определение направлений и	обработки сигналов для АЦП
разработки	методов исследований, состава	и ЦАП, пользоваться
инновационных	макетов, перечня	инструментарием для
радиоэлектронных	теоретических и	конфигурации сенсорных
средств	экспериментальных работ,	устройств.
	подлежащих разработке,	Опыт деятельности:
	разработка технических	построение сенсорной
	заданий соисполнителям	системы преобразования
	научно-технических работ	обработки данных.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы (является элективной).

Входные требования к дисциплине - знания методов имитационного и математического моделирования телекоммуникационных сетей и принципов построения инфокоммуникационных систем, основ электротехники.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		сть	сть	Контактная работа					
Курс	Семестр	Общая трудоёмкос (ЗЕ)	Общая трудоёмкост (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация	
1	2	4	144	-	32	16	60	Экз. (36)	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа			В		
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля	
1. Параметры АЦП и ЦАП	-	-	2	-	Устный опрос	
2. Архитектуры ЦАП	-	8	2	12	Выполнение и защита лабораторных работ 1 и 2	
3. Архитектуры АЦП	-	16	8	20	Выполнение и защита лабораторной работы 3-6	
4. АЦП и ЦАП для		8	4	26	Выполнение и защита лабораторной работы 7-8	
сенсорных систем.	-	O	7	20	Выполнение и защита индивидуального проекта	

4.1. Лекционные занятия

Не предусмотрены

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия	
1	1	2	Введение в АЦП и ЦАП	
2	2	2	Основные архитектуры ЦАП	
	3	2	Параллельный АЦП	
2	4	2	АЦП последовательного приближения	
3	5	2	Конвейерный АЦП	
	6	2	Сигма-дельта АЦП	
	7	2	Сенсорные системы: состав, элементы	
4	8	2	АЦП и ЦАП для преобразований сигналов с датчиков и передачи	
			по линиям связи сенсорных систем	

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы	
2	1	4	ЦАП на основе цепи резисторов	
2	2	4	ЦАП на основе R-2R	
3	3	4	АЦП последовательного приближения	
3	4	4	АЦП двойного интегрирования	
3	5	4	Конвейерный АЦП	
3	6	4	Сигма-дельта АЦП	
4	7	4	АЦ преобразование с чувствительных элементов	
4	8	4	АЦ и ЦА преобразование для сенсорных систем	

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	2	Подготовка к практическим занятиям.
4		Изучение принципов работы ЦАП на основе цепи резисторов. Расчёт параметров ЦАП. Поиск путей оптимизации быстродействия и энергопотребления ЦАП.
2	4	Изучение принципов работы ЦАП на основе R-2R. Расчёт параметров ЦАП. Сравнение с ЦАП на основе цепи резисторов.
	4	Подготовка отчета по работе ЦАП на основе цепи резисторов и R-2R. Разработка предложений по параметрам ЦАП на источниках тока и перераспределения заряда.
	4	Изучение принципов работы АЦП последовательного приближения. Расчёт параметров АЦП. Поиск путей оптимизации быстродействия и энергопотребления АЦП.
	4	Изучение принципов работы АЦП двойного интегрирования. Расчёт параметров АЦП. Сравнение с АЦП последовательного приближения.
3	4	Изучение принципов работы конвейерного АЦП. Расчёт параметров АЦП. Поиск путей оптимизации быстродействия и энергопотребления АЦП.
	4	Изучение принципов работы сигма-дельта АЦП. Расчёт параметров АЦП. Изучение архитектур многоразрядных модуляторов 2 и более порядков. Принцип работы МАЅН АЦП
	4	Подготовка отчета по работе АЦП с учетом показателей качества АЦП. Разработка предложений по областям применения различных типов АЦП.
	4 Изучение принципов работы АЦ преобразователей с чувств элементов. Расчёт параметров преобразователей.	
	4	Изучение принципов работы АЦ и ЦА преобразователей для сенсорных систем. Расчёт параметров преобразователей.
	4	Подготовка отчета по использованию АЦП и ЦАП для сенсорных систем.
4	10	Выполнение индивидуального проекта (практико-ориентированного задания (ПОЗ)) по построению модуля сенсорной системы преобразования и обработки данных
	4	Подготовка отчетной документации по индивидуальному проекту по построению модуля сенсорной системы преобразования и обработки данных

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL:, http://orioks.miet.ru/):

Для всей дисциплины: Методические указания студентам

Модуль 2 «Архитектуры ЦАП»

- ✓ Лабораторная работа 1
- ✓ Лабораторная работа 2

Модуль 3 «Архитектуры АЦП»

- ✓ Лабораторная работа 3
- ✓ Лабораторная работа 4
- ✓ Лабораторная работа 5
- ✓ Лабораторная работа 6

Модуль 4 «АЦП и ЦАП для сенсорных систем»

- ✓ Лабораторная работа 7
- ✓ Лабораторная работа 8
- ✓ Индивидуальное задание

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Волович, Г.И. Схемотехника аналоговых и аналого-цифровых электронных устройств: [Учеб. пособие] / Г.И. Волович. 3-е изд. М.: ДОДЭКА-ХХІ, 2011. 528 с. URL: https://e.lanbook.com/book/61027 (дата обращения: 30.08.2025). ISBN 978-5-94120-254-6.
- 2. Эннс В.И. Проектирование аналоговых КМОП микросхем : Краткий справочник разработчика / В.И. Эннс, Ю.М. Кобзев. М. : Горячая линия-Телеком, 2005. 454 с. ISBN 5-93517-238-0 : 275-00 (дата обращения: 30.08.2025)
- 3. Новожилов, О. П. Электроника и схемотехника в 2 ч. Часть 2 : учебник для вузов / О. П. Новожилов. Москва : Издательство Юрайт, 2025. 421 с. (Высшее образование). ISBN 978-5-534-03515-5. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561709 (дата обращения: 30.08.2025)
- 4. Щука, А. А. Электроника в 4 ч. Часть 4. Функциональная электроника : учебник для вузов / А. А. Щука, А. С. Сигов ; ответственный редактор А. С. Сигов. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2025. 183 с. (Высшее образование). ISBN 978-5-534-01873-8. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561579 (дата обращения: 30.08.2025)
- 5. Щука, А. А. Электроника в 4 ч. Часть 2. Микроэлектроника : учебник для вузов / А. А. Щука, А. С. Сигов ; ответственный редактор А. С. Сигов. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2025. 326 с. (Высшее образование). ISBN 978-5-534-01867-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561577 (дата обращения: 30.08.2025)

Нормативная литература

- 1. ГОСТ Р 55893-2013 Микросхемы интегральные. Основные параметры [Электронный ресурс] = Integrated microcircuits Basic parameters: Национальный стандарт РФ. Введ. 01.01.2015. М.: Стандартинформ, 2014. URL: http://docs.cntd.ru/document/1200107798/ (дата обращения: 30.08.2025). Текст: электронный.
- 2. ГОСТ 30606-98 Преобразователи цифрового кода в напряжение или ток измерительные. Основные параметры. Общие технические требования. Методы испытаний [Электронный ресурс] = Digital converters for voltage or current measuring. Basic parameters. General technical requirements. Methods of tests: Межгосударственный стандарт. Введ. 01.01.2004. М.: Издательство стандартов, 2003. URL: http://docs.cntd.ru/document/1200031270 (дата обращения: 30.08.2025). Текст: электронный.
- 3. ГОСТ Р 57394-2017 Микросхемы интегральные и приборы полупроводниковые. Методы ускоренных испытаний на безотказность [Электронный ресурс] = Integrated circuits and semiconductor devices. Methods of accelerated tests for no-failure operation: Национальный стандарт РФ. Введ. 01.01.2018. М.: Стандартинформ, 2017. URL: http://docs.cntd.ru/document/1200144209 (дата обращения: 30.08.2025). Текст: электронный.
- 4. ГОСТ 29106-91 Приборы полупроводниковые. Микросхемы интегральные. Часть 1. Общие положения [Электронный ресурс] = Semiconductor devices. Integrated circuits. Part 1. General: Межгосударственный стандарт. Введ. 30.06.1992. М.: Издательство стандартов, 1992. URL: http://docs.cntd.ru/document/1200015858 (дата обращения: 30.08.2025). Режим доступа: для зарегистрированных пользователей. Текст: электронный.

Периодические издания

1. Нано- и микросистемная техника: Ежемесячный междисциплинарный теоретический и прикладной науч.-техн. журн. / РАН, Отделение информационных технологий и вычислительных систем. - М.: Новые технологии: Нано-микросистемная техника, 1999-.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. ФГУП ВНИИФТРИ: научно-исследовательский институт физико-технических и радиотехнических измерений: сайт. URL: http://www.vniiftri.ru (дата обращения: 30.08.2025). Режим доступа: свободный.
- 2. IEEE/IET Electronic Library (IEL) [Электронный ресурс] = IEEE Xplore: Электронная библиотека. USA; UK, 1998-. URL: https://ieeexplore.ieee.org/Xplore/home.jsp (дата обращения: 30.08.2025). Режим доступа: из локальной сети НИУ МИЭТ в рамках проекта "Национальная подписка".
- 3. Международный союз электросвязи: специализированное учреждение ООН: сайт. URL: https://www.itu.int/ru/Pages/default.aspx (дата обращения: 30.08.2025). Режим доступа: свободный.
- 4. 3GPP: Партнерский проект 3-го поколения: сайт. URL: https://www.3gpp.org/ (дата обращения: 30.08.2025). Режим доступа: свободный.

5. eLIBRARY.RU: Научная электронная библиотека: сайт. - Москва, 2000 -. - URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 30.08.2025). - Режим доступа: для зарегистрированных пользователей.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Применяются следующие **модели обучения:** виртуальная модель, гибкая модель, модель перевернутого класса

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», форум в MOODLe, электронная почта, месенджеры и социальные сети.

В процессе обучения при проведении занятий и для самостоятельной работы используются **внутренние** электронные ресурсы в формах видеолекций, тестирования в ОРИОКС и MOODLe

При проведении занятий и для самостоятельной работы используются внешние электронные ресурсы в формах: внешних онлайн-курсов: выравнивающий курс «Основы электротехники и электроники» на платформе Открытое образование https://openedu.ru/course/urfu/ELB/,

электронных компонентов сервисов: лонгрид «Преобразование сигналов с датчиков» http://skvot.2035.university/page4381145.html.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Помещение для	Мультимедиа-проектор	Azure Dev Tools for Teaching
лабораторных работ	NEC V230X – 1 шт.	(Microsoft), OC Ubuntu, Matlab,
(ауд. 4231а)	Экран настенный для	Xilinx ISE, 7-Zip, Acrobat Reader
	мультимедиа-проектора	DC, Anaconda, Python, Octave,
	– 1 шт.	Cisco packet tracer, LibreOffice,
	Электронная печатная	Sumatra pdf, GNS3, Oracle VM
	доска Panasonic UB-5815	
	— 1 шт.	
	Доска меловая настенная	
	раскрывающаяся – 1 шт.	
	Моноблок Dell Inspirion	
	3227(Intel Core i3-713U)	
	– 20 шт.	

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Помещение для практических занятий — мультимедийный класс (ауд. 4231а)	Мультимедиа-проектор NEC V230X – 1 шт. Экран настенный для мультимедиа-проектора – 1 шт. Электронная печатная доска Panasonic UB-5815 – 1 шт. Доска меловая настенная раскрывающаяся – 1 шт. Моноблок Dell Inspirion 3227(Intel Core i3-713U) – 20 шт.	Azure Dev Tools for Teaching (Microsoft), OC Ubuntu, Matlab, Xilinx ISE, 7-Zip, Acrobat Reader DC, Anaconda, Python, Octave, Cisco packet tracer, LibreOffice, Sumatra pdf, GNS3, Oracle VM
Помещение для самостоятельной работы обучающихся	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Crome); Acrobat reader DC

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ПК-1.ААЦПиЦАП** «Способен использовать методы проведения теоретических и экспериментальных исследований в научно-исследовательских работах в области разработки инновационных радиоэлектронных средств»

Фонд оценочных средств представлен отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Для успешного прохождения курса каждому студенту необходимо активное участие в практических занятиях (семинарах) и лабораторных работ. Эти два вида занятий, где преподаватель присутствует постоянно и есть возможность задавать вопросы по любой из проблем, связанных с курсом. Практические занятия, в первую очередь направлены на формирование знаний и отдельных частей умения. Так, изучив вопросы построения

элементов АЦП или ЦАП можно упростить задачу в изучении следующей дисциплины: «Системы на кристалле». В отличие от бакалавриата у магистрантов нет лекционных занятий, все занятия проводятся в малой группе, не более 25 человек, этого достаточно для того, чтобы изучить теоретические вопросы и попробовать применить свои знания на практике. Посещение всех практических занятия позволит Вам быстрее и лучше усвоить знания. Кроме того, преподаватель может привести интересные примеры из опыта проектирования или применения АЦП или ЦАП, которые могут оказаться полезными для выполнения лабораторных работ или в будущей профессиональной деятельности. Всего в курсе 8 практических и 8 лабораторных работ. В конце курса предусмотрен экзамен.

В курсе предусмотрено профессионально-ориентированного задание направлено на развитие компетенции «Способен использовать методы проведения теоретических и экспериментальных исследований в научно-исследовательских работах в области разработки инновационных радиоэлектронных средств» в части опыта деятельности в построении сенсорной системы преобразования и обработки данных. Такая задача может возникнуть в условиях, когда работы выпускника в качестве ведущего инженера связи (телекоммуникаций), в обязанности которого входит разработка технической документации на оборудование связи (телекоммуникаций). Ошибка на любом этапе может привести к увеличению сроков выхода на рынок или удорожанию продукции. Задание для выполнения ИЗ студент может получить в любой момент, но необходимый объём знаний для выполнения будет сформирован только в начале 4 модуля. Рекомендуется последовательное возвращение к индивидуальному заданию по мере прохождения курса, для ликвидации вопросов, которые могут возникнуть на 15-16 неделе обучения. При создании материального объекта нет возможности выпускать каждый день новую версию, поэтому при проектировании важно создавать модели устройства и подтверждать их работоспособность. Задание направлено на формирование и закрепление алгоритма действий при выполнении рутинных действий. По результатам выполненных работ необходимо составить отчет и предоставить разработанную документацию. Отчет рекомендуется оформлять по ГОСТ 7.32. Все отчетные документы должны быть загружены в учебное портфолио с указанием в качестве куратора преподавателя по дисциплине. После загрузки документов можно готовиться к публичной защите своего индивидуального задания. Защита задания выполняется до сдачи экзамена по дисциплине. Для студентов могут быть доступны задания на дополнительные баллы.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме 53 балла) и сдача экзамена (47 баллов). По сумме баллов выставляется итоговая оценка по предмету. По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в ОРИОКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИК:Доцент кафедры ТКС к.т.н. _____/А.Г. Тимошенко /

Рабочая программа дисциплины «Архитектура аналого-цифровых и цифро-аналоговых преобразователей» по направлению подготовки 11.04.02 «Инфокоммуникационные технологии и системы связи», направленности (профилю) «Информационные сети и телекоммуникации» разработана на кафедре ТКС и утверждена на заседании кафедры 29.08.2025 года, протокол № 1.

Заведующий кафедрой ТКС

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК / И.М. Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки ______/ Т.П. Филиппова /