Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники»

Thoperton no XP

И.Г. Игнатова

2019

ПРОГРАММА ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Нанотехнологии в гетероструктурной СВЧ наноэлектронике

1. Цель реализации программы

Цель программы – повышение квалификации инженеров-технологов или инженеров проектировщиков в области производства СВЧ интегральных схем на основе полупроводниковых наногетероструктур в области:

- 1. планирования и организации сопровождения технологического процесса производства СВЧ интегральных схем; определения базовых технологических процессов, применяемых материалов и оборудования для изготовления опытных образцов СВЧ интегральных схем;
- 2. разработки методик входного и межоперационного контроля при производстве наногетероструктурных СВЧ интегральных схем;
- 3. моделирования характеристик наногетероструктурных СВЧ интегральных схем; выбора и обоснования типа гетероструктур и активных элементов (транзисторов, диодов), необходимых для достижения заданных основных электрических и эксплуатационных параметров СВЧ интегральных схем.

2. Требования к результатам обучения

Формируемая профессиональная компетенция — способность разрабатывать технические задания на проектирование электронных приборов, схем и устройств СВЧ-радиоэлектроники на основе гетероструктур широкозонных полупроводников

В результате освоения данной программы слушатель должен: знать

- основные физические особенности полупроводниковых гетероструктур и преимущества использования гетероструктур при создании приборов и устройств по сравнению с объемными материалами, основные типы приборов СВЧ радиоэлектроники на основе полупроводниковых гетероструктур
- основные проблемы полупроводниковой наноэлектроники, которые требуют использования новых материалов и физических эффектов для создания перспективных элементов СВЧ радиоэлектроники
- конструкцию оборудования и особенности технологий электронно-лучевой,
 проекционной и контактной литографии с нанометровым разрешением
- механизмы и особенности формирования омического контакта к полупроводникам;
- особенности технологических процессов молекулярно-пучковой и газофазной эпитаксии широкозонных полупроводниковых соединений;

- возможности взрывной фотолитографии для формирования контактов к полупроводниковым соединениям.
- основные характеристики полевых приборов гетероструктурной наноэлектроники для СВЧрадиоэлектроники,
- основные характеристики гетеробиполярных приборов гетероструктурной наноэлектроники для СВЧ-радиоэлектроники.
- возможности по формированию мостовых соединений в интегральных схемах на основе сложных полупроводников для уменьшения паразитных емкостей и уменьшения токовой нагрузки.

уметь

- использовать технологии молекулярно-пучковой и газофазной эпитаксии широкозонных полупроводниковых соединений для разработки конструкций и технологических маршрутов изготовления приборов гетероструктурной наноэлектроники для СВЧ-радиоэлектроники
- разрабатывать устойчивый технологический процесс литографии с нанометровым разрешением и характеризовать его статистическими методами,
- разрабатывать технологический маршрут формирования контактной металлизации методом взрывной фотолитографии,
- разрабатывать конструкции и технологии полевых приборов гетероструктурной наноэлектроники для СВЧ-радиоэлектроники с соответствующим топологическим разрешением,
- разрабатывать конструкции и технологии гетеробиполярных приборов гетероструктурной наноэлектроники для СВЧ-радиоэлектроники с соответствующим топологическим разрешением.
- измерять характеристик приборов и устройств гетероструктурной наноэлектроники для СВЧ-радиоэлектроники

3. Содержание программы УЧЕБНЫЙ ПЛАН

программы повышения квалификации

«Нанотехнологии в гетероструктурной СВЧ наноэлектронике»

Категория слушателей — инженеры технологи, инженеры схемотехники, научные работники в области СВЧ электроники

Срок обучения – 72 часа

Форма обучения – очная

№ п/п	Наименование модулей	Всего		В том числ	е	
			Аудиторная учебная нагрузка		ебная	Образоратаниции
			Лекции	Практические и лабораторные занятия	Самостоятельная работа	Образовательные технологии, в том числе ЭО и (или) ДОТ
1	2	3	4	5	6	7
1	Модуль 1. Физические основы создания нового поколения приборов и устройств СВЧ наноэлектроники с использованием возможностей нанофотоники и наноплазмоники	20	20	X	X	видео трансляция лекций
2	Модуль 2. Методы нанотехнологии в производстве СВЧ монолитных интегральных схем на базе полупроводниковых гетероструктур	50	14	36	X	видео трансляция лекций, работа на симуляторе
	Всего	72	34	36	X	
	Итоговая аттестация			4	2	1

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

программы повышения квалификации

«Нанотехнологии в гетероструктурной СВЧ наноэлектронике»

Модуль 1. Физические основы создания нового поколения приборов и устройств СВЧ наноэлектроники с использованием возможностей нанофотоники и наноплазмоники

No	Наименование разделов	Всего	В том числе			
п/п		часов	Аудиторная учебная нагрузка			
			Лекции	Практические и лабораторные занятия	Самостоятельная работа	Образовательные технологии, в том числе ЭО и (или) ДОТ
1	2	3	4	5	6	7
1	Раздел 1. Физические основы наноэлектроники, нанофотоники и наноплазмоники	12	12			
2	Тема 1.1. Основные тенденции развития современной наноэлектроники	4	4			видео трансляция лекций
3	Тема 1.2. Полупроводниковые гетероструктуры – основа современной СВЧ электроники	4	4			видео трансляция лекций
4	Тема 1.3. Физические основы нанофотоники	4	4			видео трансляция лекций
5	Раздел 2. Интегральная микрофотоника и микроволновая радиофотоника	8	8			
6	Тема 2.1. Основные этапы развития фотоники	2	2			видео трансляция лекций
7	Тема 2.2. Волоконно-оптические линии связи	2	2			видео трансляция лекций
8	Тема 2.3. Фотонные интегральные схемы	2	2			видео трансляция лекций
9	Тема 2.4. Интегральная микроволновая радио-фотоника (ИМРФ, IMP)	2	2			видео трансляция лекций
	Всего	20				

Модуль 2. Методы нанотехнологии в производстве СВЧ монолитных интегральных схем на базе полупроводниковых гетероструктур

No	Наименование разделов	Всего	В том числе			
п/п		часов	Аудиторная учебная нагрузка			
			Лекции	Практические и лабораторные занятия	Самостоятельная работа	Образовательные технологии, в том числе ЭО и (или) ДОТ
1	2	3	4	5	6	7
1	Раздел 3. Технология гетероструктурной наноэлектроники для СВЧ-радиоэлектроники	26	6	20		
2	Тема 3.1. Молекулярно-пучковая и газофазная эпитаксия широкозонных полупроводниковых соединений.	10	2	8		видео трансляция лекций, работа на симуляторе Нанофаб-онлайн
3	Тема 3.2. Литография в наноэлектронике	10	2	8		
4	Тема 3.3. Химические методы в наноэлектронике	6	2	4		
5	Раздел 4. Элементная база гетероструктурной наноэлектроники для СВЧ-радиоэлектроники.	24	8	16		
6	Тема 4.1. Специальные технологические подходы в наноэлектронике	2	2			видео трансляция лекций
7	Тема 4.2. Полевые и биполярные транзисторы на основе полупроводниковых наногетероструктур	14	2	12		
8	Тема 4.3. Методы характеризации этапов технологического процесса.	6	2	4		
9	Тема 4.4. Пассивные элементы СВЧ МИС (резисторы, емкости, индуктивности, применение гальванических методов).	2	2			видео трансляция лекций
W	Всего	50	14	36		

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Календарный учебный график составляется в форме расписания занятий при наборе группы и прилагается к программе повышения квалификации.

УЧЕБНАЯ ПРОГРАММА ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

«Нанотехнологии в гетероструктурной СВЧ наноэлектронике»

- Модуль 1. Физические основы создания нового поколения приборов и устройств СВЧ наноэлектроники с использованием возможностей нанофотоники и наноплазмоники
- Раздел 1. Физические основы наноэлектроники, нанофотоники и наноплазмоники (12 часов)
 - Тема 1.1. Основные тенденции развития современной наноэлектроники
- Тема 1.2. Полупроводниковые гетероструктуры основа современной СВЧ электроники
 - Тема 1.3. Физические основы нанофотоники
 - Раздел 2. Интегральная микрофотоника и микроволновая радиофотоника (8 часов)
 - Тема 2.1. Основные этапы развития фотоники
 - Тема 2.2. Волоконно-оптические линии связи
 - Тема 2.3. Фотонные интегральные схемы
 - Тема 2.4. Интегральная микроволновая радио-фотоника (ИМРФ, ІМР)
- Модуль 2. Методы нанотехнологии в производстве СВЧ монолитных интегральных схем на базе полупроводниковых гетероструктур
- Раздел 3. Технология гетероструктурной наноэлектроники для СВЧрадиоэлектроники (26 часов)
- Тема 3.1. Молекулярно-пучковая и газофазная эпитаксия широкозонных полупроводниковых соединений.
 - Тема 3.2. Литография в наноэлектронике
 - Тема 3.3. Химические методы в наноэлектронике
- Раздел 4. Элементная база гетероструктурной наноэлектроники для СВЧрадиоэлектроники (24 часа)
 - Тема 4.1. Специальные технологические подходы в наноэлектронике
- Тема 4.2. Полевые и биполярные транзисторы на основе полупроводниковых наногетероструктур
 - Тема 4.3. Методы характеризации этапов технологического процесса.

Тема 4.4. Пассивные элементы СВЧ МИС (резисторы, емкости, индуктивности, применение гальванических методов).

ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Практические занятия не предусмотрены

ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ РАБОТ

№ темы	Наименование лабораторной работы	Кол-во часов
3.1	Кластерное оборудование нанотехнологий	4
3.1	Рост гетероструктуры на основе твёрдых растворов AlGaN	4
3.2	Наноимпринт литография -технология формирования	4
3.2	Наноимпринт литография – методы характеризации объектов с помощью ACM	4
3.3	Плазмохимические процессы (нанесение и травление диэлектрика) в технологии СВЧ наноэлектронике	4
4.2	Исследование параметров НЕМТ транзисторов	4
4.2	Исследование параметров НВТ транзисторов	4
4.2	Формирование затвора для мощного полевого СВЧ транзистора	4
4.3	Исследование параметров резонансно-туннельных диодов	4

4. Материально-технические условия реализации программы

Наименование	Вид занятия	Наименование оборудования, программного
специализированных		обеспечения
аудиторий кабинетов,		
лабораторий		
Лаборатория элементной	Лабораторные	Установка плазмохимического травления
базы наноэлектроники	работы	Corial 200L
•	1	Установка нанесения диэлектрика Corial D-
		250
		Установка установка вакуумного напыления
		Lab-18 фирмы "Kurt J. Lesker"
		Высокотемпературная печь RTP-1200-100
		фирмы "Unitemp"
		Установка экспонирования МЈВ-4 фирмы "
		Suss Microtec"
		Установка плазмохимической обработки РХ-
		250 фирмы "March"
		Установка наноимпринт литографии FC150
		фирмы " Suss Microtec"
		Установка нанесения и сушки Delta 6
	n. v v .	RC,Delta 6 HP фирмы Karl Suss
		Установка совмещения и экспонирования

		MJB4 фирмы Karl SussЗондовая установка для проведения межоперационного контроля PM5 фирмы Karl Suss
НОЦ «Зондовая микроскопия и нанотехнология»	Лабораторные работы	Модульная нанотехнологическая платформа НАНОФАБ-100 НТК-5 Учебный симулятор Нанофаб-онлайн
Лаборатория физики твердого тела	Лабораторные работы	Измеритель добротности ВМ 560 Мультиметр Agilent 34405A
		установка измерения эффекта Холла Есоріа HMS-5000 блоки питания Agilent 3834A осциллограф TDS 2012B Tektronix

5. Учебно-методическое обеспечение программы

Модульное построение образовательной программы предполагает на основе требований предприятий-заказчиков, проводить корректировку как программы в целом, так и содержательной части самих профессиональных модулей, что позволяет успешно решать задачи качественной профессиональной подготовки.

Для подготовки слушателей к работе на эпитаксиальном оборудовании используются многофункциональные симуляторы модулей МЛЭ и ФИП на платформе Нанофаб-онлайн. Симуляторы содержат интерактивное описание оборудования, эмуляцию процессов подготовки оборудования к работе, а также интерфейс управления программой управления модулем (МЛЭ или ФИП), полностью идентичные интерфейсам управляющих программ оборудования.

Учебно-методическое обеспечение ДОП представлено тремя компонентами:

- 1) описания лабораторных работ, лекционные презентации;
- 2) инструкции по эксплуатации технологического и измерительного оборудования, технологическая документация по проведению отдельных процессов, инструкция по использованию симулятора Нанофаб-онлайн;
- 3) контрольно-измерительные материалы: сборники кон трольных заданий, методики контроля, тестовые задания, анкеты и др.

6. Оценка качества освоения программы

Оценка качества освоения программы проводится аттестационной комиссией. Слушатель считается аттестованным (овладел профессиональной компетенцией), если

- 1. Все лабораторные работы выполнены правильно или с некритичными ошибками, которые были устранены под руководством преподавателя. По установленной форме составлены отчеты о выполнении каждой лабораторной работы.
- 2. При защите лабораторных работ даны ответы на контрольные вопросы, в объеме, достаточном для решения производственных задач. Возможны затруднения с ответами на дополнительные вопросы преподавателя.
- 3. Даны правильные ответы более чем на 50% проверочных заданий
- 4. Подготовлен качественный реферат по рассматриваемым в ДОП разделам наноэлектроники.

7. Составители программы

Зав. кафедрой КФН	la .
члкорр. РАН, профессор, д. фм. н.	Горбацевич А. А
Доцент кафедры КФН	
доцент, к. фм. н.	Журавлев М. Н.
СОГЛАСОВАНО	
Директор ДРОП	Соколова Н.Ю.

6. Оценка качества освоения программы

Оценка качества освоения программы проводится аттестационной комиссией. Слушатель считается аттестованным (овладел профессиональной компетенцией), если

- 1. Все лабораторные работы выполнены правильно или с некритичными ошибками, которые были устранены под руководством преподавателя. По установленной форме составлены отчеты о выполнении каждой лабораторной работы.
- 2. При защите лабораторных работ даны ответы на контрольные вопросы, в объеме, достаточном для решения производственных задач. Возможны затруднения с ответами на дополнительные вопросы преподавателя.
- 3. Даны правильные ответы более чем на 50% проверочных заданий
- 4. Подготовлен качественный реферат по рассматриваемым в ДОП разделам наноэлектроники.

7. Составители программы

Зав. кафедрой КФН	
члкорр. РАН, профессор, д. ф	b. - м. н.

______ Горбацевич А. А.

Доцент кафедры КФН доцент, к. ф.-м. н.

СОГЛАСОВАНО

Директор ДРОП

Соколова Н.Ю.