Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Алексан Монтистерство науки и высшего образования Российской Федерации

Должность: Ректор МИЭТ Дата подписания: 01.09.2023 11:56:15 — «Наукональный исследовательное учреждение высшего образования исследовательное учреждение высшего образования дата подписания: 01.09.2023 11:56:15

«Национальный исследовательский университет

Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d76c6f6bea682bdb6d2

бной работе

И.Г. Игнатова

2020г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«3D моделирование»

Направление подготовки – 01.04.04 «Прикладная математика» Направленность (профиль) – «Математические методы и моделирование в естественнонаучной и технической сферах» Направленность (профиль) – «Цифровая обработка сигналов и изображений»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция,	Подкомпетенции,	Индикаторы достижения компетенций	
формируемая в	формируемые в		
дисциплине	дисциплине		
ОПК-3. Способен	ОПК-3.3D Способен	<i>Знает</i> теоретические основы	
разрабатывать	использовать методы 3D	методов 3D моделирования	
наукоемкое	моделирования и	<i>Умеет</i> применять методы 3D	
программное	разрабатывать наукоемкое	моделирования на практике	
обеспечение для	программное обеспечение	<i>Имеет опыт</i> моделирования 3D	
автоматизации систем	для автоматизации систем и	объектов, отражений, теней,	
и процессов, а также	процессов, а также	рельефа, динамических	
развивать	развивать информационно-	поверхностей (жидкости, ткани).	
информационно-	коммуникационные		
коммуникационные	технологии		
технологии			

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть Блока 1 «Дисциплины (модули)» образовательной программы.

Для изучения дисциплины студент должен владеть знаниями и умениями в объёме курсов линейной алгебры и аналитической геометрии, основами компьютерной графики.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		CTB	сть	Конта	стная раб	ота		
Курс	Семестр	Общая трудоёмко (3E)	Общая трудоёмко (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
2	3	3	108	16	-	16	76	ЗаО

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа			8		
№ и наименование Модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля	
1. Математические основы 3D моделирования	16	-	16	76	Защита домашних заданий № 1-5	

4.1. Лекционные занятия

	дисциплины № лекции	Объем занятий (часы)	Краткое содержание			
1	1	2	Введение в шейдеры. Вершинный и пиксельный шейдеры.			
	2	2	Модель Фонга. Реализация простейших алгоритмов с помощью Шейдеров. Реализация модели Фонга с помощью шейдеров.			
	3	2	Рельефное текстурирование. Реализация с помощью карт высот и шейдеров эффекта рельефа на поверхности объекта.			
	4	2	Эффект тени. Получение эффекта тени для объектов сложной нелинейной формы с помощью буфера глубины и шейдеров.			
	5	2	Дополнительные возможности шейдеров. Геометрический и мозаичный шейдеры.			
	6	2	Математическая модель поверхности жидкости. Имитация поверхности жидкости с помощью дифференциального уравнения и модели освещения Фонга.			
	7	2	Математическая модель ткани. Имитация ткани помощью математической модели ткани и модели освещения Фонга.			
	8	2	Имитация механических процессов. Введение в физические вычислители (physics engine).			

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия			
1	1	2	Вершинный и пиксельный шейдеры.			
	2	2	Реализация модели Фонга с помощью шейдеров.			
	3	2	Рельефное текстурирование с помощью шейдеров.			
	4	2	Эффект тени с помощью шейдеров.			
	5	2	Геометрический и мозаичный шейдеры.			
	6	2	Математическая модель поверхности жидкости.			
	7	2	Математическая модель ткани.			
	8	2	Имитация механических процессов с помощью физических			
			вычислителей (physics engine).			

4.3. Лабораторные работы

Не предусмотрены

4.4. Самостоятельная работа студентов

№ модуля писпиппины	Апсиния Объем занятий (часы)	Вид СРС	
1	15	Выполнение домашнего задания №1	
	15	Выполнение домашнего задания №2	
	15	Выполнение домашнего задания №3	
	15	Выполнение домашнего задания №4	
	16	Выполнение домашнего задания №5	

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрено

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (OPИOKC// URL: http://orioks.miet.ru/:

Общее

- ✓ Методические указания студентам по изучению дисциплины
- Модуль 1 «Математические основы 3D моделирования»
- ✓ Планы практических занятий
- ✓ Тексты лекций (для всех видов самостоятельной работы)
- ✓ Варианты домашних заданий

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Мацуда К. (Коичи Мацуда). WebGL: программирование трехмерной графики: Пер. с англ. А.Н. Киселева / К. Мацуда, Р. Ли. М.: ДМК Пресс, 2015. 494 с. URL: https://e.lanbook.com/book/63189 (дата обращения: 05.09.2020)
- 2. Кузнецова С.Н. Конспект лекций для студентов экономических специальностей. I курс (модуль 1–2). Линейная алгебра и аналитическая геометрия / С.Н. Кузнецова, М.В. Лукина. СПб. : СПбГУ ИТМО, 2010. 72 с. URL: http://books.ifmo.ru/book/563/konspekt lekciy.htm (дата обращения: 04.09.2020).
- 3. Типовой расчет по высшей математике. Аналитическая геометрия. 1 модуль : Учебно-методическое пособие / Л.В. Гортинская, Т.Ф. Панкратова, В.В. Понятовский [и др.]. СПб. : СПбГУ ИТМО, 2012. 50 с. URL: http://books.ifmo.ru/book/756/tipovoy_raschet.htm (дата обращения: 04.09.2020). Режим доступа: свободный.
- 4 Типовые расчеты по высшей математике. 1 курс (модуль 1). Линейная алгебра и аналитическая геометрия: Методические указания и задачи для студентов / Л.В. Гортинская, И.А. Лапин, Т.Ф. Панкратова [и др.]. СПб.: НИУ ИТМО, 2012. 49 с. URL: http://books.ifmo.ru/book/789/tipovye_raschety.htm (дата обращения: 04.09.2020). Режим доступа: свободный.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 28.09.2020). Режим доступа: для авторизированных пользователей МИЭТ
- 2. eLIBRARY.RU: Научная электронная библиотека: сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 05.09.2020). Режим доступа: для зарегистрированных пользователей
- общероссийский 3. Math-Net.Ru: математический портал: сайт. Москва, Математический институт им. B. A. Стеклова PAH, 2020. URL: http://www.mathnet.ru/ (дата обращения: 06.04.2020). – Режим доступа: для зарегистрированных пользователей.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Учебный процесс реализуется в формате смешанного обучения.

Применяется расширенная виртуальная модель обучения, предполагающая обязательное присутствие студентов на очных учебных занятиях с преподавателем и

последующую самостоятельную работу студента по теме занятия. Работа еженедельно происходит по следующей схеме:

- (1) лекция (контактная работа по расписанию занятий) СРС (проработка лекционного материала с использованием текста, презентации, видео записи;
- (2) семинар (контактная работа по расписанию занятий, включающая совместное решение типовых заданий и обсуждение нетиповых задач) СРС (выполнение текущей домашней работы по теме семинара с последующим рецензированием и оцениванием).

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел «Домашние задания» ОРИОКС, форумы в электронном курсе MOODLE, электронная почта.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Учебная доска Мультимедийное оборудование (компьютер с ПО и возможностью подключения к сети Интернет и обеспечением доступа в электронно- образовательную среду МИЭТ; телевизоры; акустическое оборудование (микрофон, звуковые колонки))	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Profe ssional Plus или Open Office, браузер (Firefox, Google Chrome); Acrobat reader DC Visual Studio
Учебная аудитория Помещение для самостоятельной работы обучающихся	Учебная доска Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно- образовательную среду МИЭТ	ПО не требуется Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Profe ssional Plus или Open Office, браузер (Firefox, Google Chrome); Acrobat reader DC Visual Studio

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ОПК-3.3D «Способен использовать методы 3D моделирования и разрабатывать наукоемкое программное обеспечение для автоматизации систем и процессов, а также развивать информационно-коммуникационные технологии»

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Лекции и практические занятия проводятся контактно в соответствии с расписанием (1 час лекций, 1 час практических занятий в неделю). Посещение лекций и практических занятий обязательно. Дополнительной формой контактной работы являются консультации (их посещать необязательно).

Перечень доступных студентам учебно-методических материалов приведен в п. 5, 6, 7.

Набор домашних заданий включает практико-ориентированные задания на опыт деятельности.

Подробное описание организации процесса обучения, системы контроля и оценивания изложено в «Методических рекомендациях студентам по изучению дисциплины».

11.2. Система контроля и оценивания

Система контроля включает мероприятия текущего контроля. Текущий контроль состоит из пяти домашних заданий.

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система. Баллами оцениваются: выполнение каждого контрольного мероприятия в семестре. Максимальный суммарный балл — 100.

Важное значение придается соблюдению сроков сдачи контрольных мероприятий. Задержка в сдаче приводит к уменьшению числа баллов, начисляемых за выполнение, вплоть до полной их потери (соответствующие правила прописаны в «Методических рекомендациях студентам по изучению дисциплины»).

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИК:

Доцент каф. ВМ-1, к.ф.-м.н.

/Ярошевич В.А./

Рабочая программа дисциплины «3D моделирование» по направлению подготовки 01.04.04 «Прикладная математика», направленности (профили) «Цифровая обработка сигналов и изображений», «Математические методы и моделирование в естественнонаучной и технической сферах», разработана на кафедре ВМ-1 и утверждена на заседании кафедры 10.14 202 года, протокол № 3

Заведующий кафедрой ВМ-1 —/А.А. Прокофьев/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК //Никулина И.М./

Рабочая программа согласована с библиотекой МИЭТ