Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Алексан Министерство науки и высшего образования Российской Федерации

Должность: Ректор МИЭТ — Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 01.09.2023 15:34:54

Уникальный программный ключ: «Национальный исследовательский университет

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f7**30\ft@c8x3Bc3x81**b**0dtc0f**urryт электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

И.Г. Игнатова

(28 »

2020 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Механика»

Направление подготовки - 20.03.01 <u>«Техносферная безопасность»</u> Направленность (профиль) - <u>«Инженерная защита окружающей среды»</u>

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенция ПК-1 «Способен использовать законы и методы математики, естественных, гуманитарных и экономических наук при решении профессиональных задач» сформулирована на основе профессионального стандарта 40.117 Специалист по экологической безопасности (в промышленности).

Обобщенная трудовая функция C[6]: Разработка и проведение мероприятий по повышению эффективности природоохранной деятельности организации.

Трудовая функция (C/02.6).: Экологическое обеспечение производства новой продукции в организации.

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
пк-1. Мех. Способен использовать основные положения механики при инженерных разработках среднего уровня сложности	Эксплуатация и контроль средств защиты техносферы	Знания: общих принципов и методов теоретической и прикладной механики, основ конструирования для анализа и расчета элементов конструкций механизмов, машин, аппаратов в области техносферной безопасности. Умения: решать стандартные профессиональные задачи с применением принципов и методов расчетов типовых элементов конструкций механизмов, машин, аппаратов по критериям прочности и жесткости. Опыт деятельности: опыт анализа, расчёта и конструирования элементов конструкций механизмов, машин, аппаратов в области техносферной безопасности.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блок 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине - знание основ высшей математики, физики, инженерной и компьютерной графики; умение применять знания разделов высшей

математики, физики, инженерной и компьютерной графики для решения стандартных профессиональных задач в области техносферной безопасности.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		E)		Контактн	ая работа		-	
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
2	3	4	144	32	16	16	80	ЗаО, КР
2	4	4	144	16	16	16	60	Экз.

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	Контактная работа				
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля	
1. Механика					Тестирование	
	8	6	4	10	Защита лабораторных работ (Л.Р) Сдача 1-ой и 2-ой части	
					курсовой работы (КР)	
2. Техническая механика		10	12	70	Тестирование	
					Защита лабораторных работ (Л.Р)	
	24				Сдача 3-ей, 4-ой, 5-ой и 6- ой части курсовой работы (КР)	
					Защита курсовой работы (KP)	
3. Прикладная механика					Защита лабораторных работ (Л.Р)	
	16	16	16	60	Сдача расчетно- графических работ (РГР) Рубежный контроль (тестирование)	

4.1. Лекционные занятия

№ модуля лиспиплины	№ лекции	Объем занятий (часы)	Краткое содержание			
1	1	2	Статика твердого тела. Основные задачи, понятия и исходные			
1	2	2	положения статики. Связи и их реакции.			
	2	2	Сложение сил. Система сходящихся сил. Проекции силы на ось и на плоскость. Равновесие системы сходящихся сил.			
	3	2	Момент силы относительно центра (точки). Пара сил. Момент силы			
			относительно оси. Приведение системы сил к центру.			
	4	2	Плоская система сил и условия ее равновесия. Система параллельных			
			сил. Центр тяжести твердого тела. Способы определения координат			
			центров тяжести тел.			
	5	2	Прикладная механика. Основные определения, гипотезы и допущения.			
			Внутренние силовые факторы, напряжения и деформации.			
	6	2	Анализ внутренних силовых факторов в элементах конструкций при			
			растяжении (сжатии), кручении и изгибе.			
	7	2	Расчет на прочность и жесткость при растяжении и сжатии элементов			
			конструкций.			
	8	2	Расчет на прочность и жесткость при сдвиге и кручении элементов			
			конструкций.			
	9	2	Изгиб. Геометрические характеристики поперечных сечений. Расчет			
			на прочность при изгибе.			
	10	2	Расчет на жесткость при изгибе. Интеграл Мора, способ Верещагина.			
2			Статически неопределимые системы, работающие на изгиб.			
_	11 2 Расчет на устойчивость стержней и пластин.					
	12	2	Расчет на прочность при сложном напряженном состоянии. Гипотезы			
			прочности.			
	13	2	Расчет на выносливость при действии переменных циклических			
			напряжений. Предел выносливости, коэффициент запаса			
			выносливости. Концентрация напряжений.			
	14	2	Основы конструирования. Основные положения. Соединения деталей.			
			Материалы. Конструкции.			
	15	2	Передаточные механизмы. Основные понятия и определения.			
			Классификация механизмов.			
	16	2	Элементы механических передач. Кинематический и силовой расчет			
	17	2	механизма привода.			
3	17	2	Методы расчета статически неопределимых систем. Интеграл Мора. Метод сил.			
3	18	2	Сборочные напряжения и деформации. Расчет многослойных			
	10		соорочные напряжения и деформации. гасчет многослоиных			

		структур.
19	19 2 Упругие колебания. Модели свободных и вынужденных колеба	
		Диссипация колебаний.
20	2	Расчет на ударную нагрузку. Осевой, скручивающий и поперечный
		удар. Расчет НДС.
21	2	Теория контактных напряжений и деформаций. Проектный и
		проверочный расчет передач.
22	2	Валы и оси. Проектный и проверочный расчет. Расчет на жесткость и
		на колебания.
23	2	Опоры. Подшипники скольжения и качения. Проектирование и
		проверочные расчеты.
24	2	Соединения деталей разьемные и неразьемные. Муфты. Методы
		расчета.

4.2. Практические занятия

— № модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия					
1	1	2	Статика сил. Плоские системы сходящихся и параллельных сил.					
			Условия равновесия.					
	2	2	Виды опор (связей). Определение реактивных сил и моментов в					
			опорах (связях).					
	3	2	Определение центра тяжести плоской фигуры.					
	4	2	Расчет на прочность и жесткость элементов конструкций при					
			растяжении и сжатии.					
	5	2	Расчет на прочность и жесткость элементов конструкций при					
2			кручении.					
	6	2	Расчет на прочность и жесткость элементов конструкций при изгибе.					
	7	2	Расчет на устойчивость продольно-сжатых стержней.					
	8	2	Расчеты зубчатых передач.					
	9	2	Сложное сопротивление. Изгиб с растяжением. Изгиб с кручением.					
	10	2	Раскрытие статической неоределимости плоских рам, арок,					
			пространственных рам.					
	11	2	Расчет сборочных напряжений в материалах ИС.					
3	12	2	Проектные и проверочные расчеты зубчатых передач.					
	13	2	Проектные и проверочные расчеты соединений деталей приборов.					
	14	2	Расчеты на статическую прочность и выносливость валов					
	15	2	Расчеты подшипников скольжения и качения.					
	16	2	Расчет пружин растяжения, сжатия и кручения.					

4.3. Лабораторные работы

№ модуля	дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы
1	-	1	2	Исследование свойств плоской системы сходящихся сил
	2 2 Определение координат			Определение координат центра тяжести плоских фигур
	-	3	2	Испытания на растяжение и на сжатие
	_	4	2	Испытание материалов на кручение
		5	2	Испытание бруса на изгиб
2		6	2	Определение упругих характеристик материалов
		7	2	Исследование плоского напряженного состояния методом
				тензометрии
		8	2	Изучение конструкций и определение параметров зубчатых
				редукторов
		9	2	Поляризационный оптический метод исследования напряжений.
		10	2	Исследование устойчивости сжатого стержня.
		11	2	Исследование концентрации напряжений.
3	.	12	2	Определение перемещений при продольно-поперечном изгибе
)		13	2	Исследование НДС статически неопределимой балки.
		14	2	Исследование НДС статически неопределимой арки.
		15	2	Экспериментальное исследование статически неопределимой рамы.
	-	16	2	Характеристики витых пружин растяжения, сжатия, кручения.

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	2	Подготовка к тестированию
	6	Выполнение 1-ой и 2-ой части курсовой работы (КР)
	2	Подготовка к лабораторным работам (ЛР)
2	6	Подготовка к тестированию
	28	Выполнение 3-ей, 4-ой, 5-ой и 6-ой части курсовой работы (КР)
	6	Подготовка к лабораторным работам (ЛР)
	15	Подготовка к защите курсовой работы
	15	Подготовка к Рубежному контролю (РК)

3	15	Подготовка к Рубежному контролю (РК)
	20	Выполнение расчетно-графических работ (РГР)
	25	Подготовка к лабораторным работам (ЛР)

4.5. Примерная тематика курсовых работ (проектов)

Модули 1, 2

- 1. Определение реактивных сил и моментов в опорах (связях).
- 2. Определение центра тяжести плоской фигуры.
- 3. Расчет на прочность и жесткость элементов конструкций при растяжении и сжатии.
- 4. Расчет на прочность и жесткость элементов конструкций при кручении.
- 5. Расчет на прочность и жесткость элементов конструкций при изгибе.
- 6. Расчеты зубчатых передач.

Модуль 3 Курсовая работа не предусмотрена

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

- Методические указания студентам по изучению курса
- Методические указания студентам по освоению внешнего электронного ресурса

Модуль 1 « Механика»

- Конспект лекций.
- Учебно-методическое пособие для практических занятий
- Лабораторный практикум
- Учебно-методическое пособие по выполнению курсовых работ

Модуль 2 «Техническая механика»

- Конспект лекций.
- Учебно-методическое пособие для практических занятий
- Лабораторный практикум
- Учебно-методическое пособие по выполнению курсовых работ

Модуль 3 «Прикладная механика»

- Конспект лекций.
- Учебно-методическое пособие для практических занятий.
- Лабораторный практику.
- Учебно-методическое пособие по выполнению курсовых работ.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

- 1. Тарг С.М. Краткий курс теоретической механики [Текст]: Учебник / С. М. Тарг. 20-изд., стер. М.: Высшая школа, 2010. 416 с.
- 2. Теоретическая механика: Учебно-методическое пособие для практических занятий /Под ред. С.В. Угольникова, М.: МИЭТ, 2016. 204 с. Имеется электронная версия издания.

- 3. Теоретическая механика [Текст] : Лабораторный практикум / В.З. Гребенкин [и др.] ; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ"; Под ред. С.В. Угольникова. М. : МИЭТ, 2013. 80 с. Имеется электронная версия издания.
- 4. Гребенкин, В. З. Техническая механика: учебник и практикум для вузов / В. З. Гребенкин, Р. П. Заднепровский, В. А. Летягин; под редакцией В. З. Гребенкина, Р. П. Заднепровского. Москва: Издательство Юрайт, 2020. 390 с. (Высшее образование). ISBN 978-5-9916-5953-6. Текст: электронный // ЭБС Юрайт [сайт]. URL: http://www.biblio-online.ru/bcode/450655 (дата обращения: 07.09.2020)
- 5. Гребенкин В.З. Механика: Пособие к практическим занятиям / В.З. Гребенкин, В.А. Летягин, А.И. Погалов. М.: МИЭТ, 2010 156 с. Имеется электронная версия издания.
- 6. Прикладная механика: Лабораторный практикум / В. 3. Гребенкин [и др.]; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ"; Под ред. А.И. Погалова. М.: МИЭТ, 2014. 140 с. Имеется электронная версия издания.
- **7.** Техническая механика микросистем: Учеб. пособие / А. И. Погалов [и др.] Под ред. В.Н. Тимофеева. М.: Бином. Лаборатория знаний, 2009. 176 с.
- 8. Тимофеев В.Н. Инженерные расчеты элементов и узлов микросистемной техники [Текст] : Учеб. пособие / В. Н. Тимофеев, [и др.]; М-во образования и науки РФ, Федеральное агентство по образованию, МГИЭТ(ТУ); Под ред. В.Н. Тимофеева. М. : МИЭТ, 2009. 192 с. Имеется электронная версия издания.
- 9. Техническая механика: Учебно-методическое пособие по выполнению курсовых работ / В.А. Летягин, А.И. Погалов, Е.А. Сахаров, С.В. Угольников; М-во образования и науки РФ, Национальный исследовательский университет «МИЭТ» М.; МИЭТ, 2019. 232 с. Имеется электронная версия издания.
- 10. Метрология: Учеб. пособие для вузов / А.А. Дегтярев [и др.]; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". 2-е изд., перераб. и доп. М. : Академический Проект, 2020. 239 с. (Gaudeamus: Библиотека геодезиста и картографа). ISBN 978-5-8291-2487-8.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Электронный фонд правовой и нормативно технической документации: сайт / AO «Кодекс» . Москва, 2020 . URL: http://docs.cntd.ru/ (дата обращения 07.09.2020).
- 2. Росстандарт / Федеральное агентство по техническому регулированию и метрологии: сайт. Москва. URL: https://www.rst.gov.ru/portal/gost//home/standarts (дата обращения 07.09.2020).
- 3. Лань: электронно-библиотечная система. Санкт-Петербург, 2011 URL: https://e.lanbook.com/ (дата обращения: 07.09.2020). Режим доступа: для авториз. пользователей МИЭТ.
- 4. Российское образование. Федеральный портал: сайт. Москва, 2002 URL: http://www.edu.ru/ (дата обращения: 07.09.2020)

- 5. eLIBRARY.RU: научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru (дата обращения07.09.2020). Режим доступа: для зарегистрир. пользователей.
- 6. РИА «Стандарты и качество»: стандартизация, метрология, менеджмент качества: сайт. Москва, 2000 URL: https://ria-stk.ru/ (дата обращения: 07.09.2020).
- 7. РУКОНТ: Национальный цифровой ресурс: Электронно-библиотечная система: сайт. Москва: Сколково, 2010 URL: https://lib.rucont.ru/search (дата обращения: 07.09.2020). Режим доступа: для авториз. пользователей МИЭТ.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение, сочетающее традиционные формы аудиторных занятий и взаимодействие в электронной образовательной среде.

В ходе реализации обучения используется «расширенная виртуальная модель», которая предполагает обязательное присутствие студентов на очных учебных занятиях с последующим самостоятельным выполнением индивидуального задания. Работа поводится по следующей схеме: аудиторная работа (семинар с отработкой типового задания в группе); СРС (онлайновая работа с использованием онлайн-ресурсов, в т.ч. для организации обратной связи с обсуждением, консультированием, с последующей доработкой и подведением итогов). Итоги СРС представляются на заключительном занятии с участием всех студентов группы и преподавателя.

Важную роль в процессе обучения играют лабораторные занятия, предназначенные не только для закрепления знаний, полученных на лекционных и практических занятиях, и при выполнении самостоятельной работы, но и для получения навыков исследовательской и практической работы на лабораторном оборудовании. Лабораторные работы, как правило, проводятся в интерактивном режиме при работе в малых группах и диалоге с преподавателем с разбором конкретных ситуаций в процессе выполнения экспериментальных исследований и при защите полученных результатов.

При проведении практических занятий студенты не только закрепляют знания, полученные на лекциях, но и получают навыки решать стандартные профессиональные задачи с применением законов и методик расчетов типовых элементов конструкций механизмов, машин, аппаратов в области техносферной безопасности.

По тематике практических занятий разработаны задания для курсовой работы, которые студенты выполняют в 3 семестре, и расчётно-графических работ, которые студенты выполняют в 4 семестре, в отведенное для этого время СРС с предоставлением и оценкой отчетов по выполненной работе с обоснованными выводами.

Освоение образовательной программы обеспечивается ресурсами размещенными в электронной информационно-образовательной среде OPИOKC http://orioks.miet.ru.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: ОРИОКС «Домашние задания», электронная почта преподавателя, Skype и др.

В процессе обучения при проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы (http://orioks.miet.ru): электронные версии лекций, лабораторных работ, практических занятий, методических разработок по тематике курса и др. Для самостоятельной работы разработаны задания к курсовой работе

и к расчётно-графическим работам по основным разделам курса. В рамках тестирования студентов используется внешний электронный ресурс (http://k-a-t.ru/testy-tex-mex/test1/level.php): электорнные версии тестов по основным разделам дисциплины.

Дисциплина может быть реализована в дистанционном формате. При дистанционном обучении проводятся *online* лекции, практические и лабораторные занятия по Skype и Zoom, запись которых выкладывается в *Youtube* и Miet.study. Вся информация доступна для студентов через среду ОРИОКС.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	мультимедийное	OC Microsoft Windows
	оборудование	Microsoft Office браузер Acrobat reader DC
Учебная аудитория	Доска	-
Лаборатория прочности и	1. Машина испытательная	
динамических испытаний	на растяжение RM-102 (1	
ауд. 4117	шт.)	
	2. Машина кручения КМ-	
	50-1 (1 шт.)	
	3. Универсальная	
	испытательная машина	
	УММ-5 (2 шт)	
	4. Типовой комплект	
	оборудования по курсу	
	«Прикладная механика» (1	
	шт) 5. Универсальный	
	лабораторный учебный	
	стенд «сопротивление	
	материалов»(1 шт)	
Помещение для	Компьютерная техника с	OC Microsoft Windows
самостоятельной работы	возможностью	Microsoft Office браузер
обучающихся	подключения к сети	Acrobat reader DC
	«Интернет» и	
	обеспечением доступа в ОРИОКС	

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

ФОС по компетенции/подкомпетенции **ПК-1. Мех.** Способен использовать основные положения механики при инженерных разработках среднего уровня сложности

Фонд оценочных средств представлен отдельным документом и размещён в составе УМК дисциплины электронной информационной образовательной среды ОРИОКС// URL: http://www.orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Для формирования подкомпетенции и приобретения необходимых знаний, умений и опыта деятельности в рамках данного курса читаются лекции, проводятся практические и лабораторные занятия.

В процессе изучения курса предполагается самостоятельная работа студента при подготовке к практическим и лабораторным занятиям, выполнению тестов и выполнению курсовой работы и расчётно-графических работ. При этом студент использует методические разработки, рекомендуемую литературу, библиотеку электронных модулей в электронной информационной образовательной среде ОРИОКС, Интернет-ресурсы, информационно-справочные системы.

Максимальная эффективность освоения материалов лекций достигается при посещении студентом лекционных занятий с последующим повторением пройденного материала.

Для закрепления лекционного материала проводятся *практические занятия*. Для повышения эффективности практических занятий (семинаров) студенту необходимо прочитать конспект лекций по данной тематике и соответствующие главы учебника (учебного пособия). На занятии, под руководством преподавателя, рассматриваются методики решения задач по теоретической и прикладной механике, а также основам конструирования. Практические занятия направлены на рассмотрение примеров выполнения частей курсовой работы, а также выполнения расчётно-графических работ.

После рассмотрения материала практического занятия преподаватель выдает каждому студенту индивидуальный вариант очередной части курсовой работы (третий семестр) или РГР (четвертый семестр) на применение рассмотренных материалов, которое студенты выполняют в рамках СРС в течение заданного времени, получив на практическом занятии методические рекомендации по выполнению. Выполненные задания в виде отчета с выводами по полученным результатам присылаются студентами преподавателю и оцениваются баллами. Оценки доводятся до студентов, при этом может быть организована беседа-дискуссия по разбору итогов выполненной работы и анализу ошибок.

Для закрепления знаний, полученных на лекционных занятиях и при выполнении самостоятельной работы, а также для получения навыков исследовательской и практической работы на лабораторном оборудовании и установках, проводятся *пабораторные работы*. Чтобы хорошо подготовиться к лабораторному занятию, студенту необходимо во время самостоятельной работы в системе ОРИОКС ознакомится

с описанием лабораторной работы и оформить теоретическую часть отчета в соответствии с изложенными в описании требованиями. Она включает описание объекта исследований, методики проводимых экспериментов и таблицы для записи экспериментальных результатов. К выполнению практической части работы допускается студент, продемонстрировавший знания объекта, методики проведения экспериментов и имеющий заготовленные заранее формы представления экспериментальных результатов.

При выполнении работы в лаборатории студент знакомится с описаниями приборов и оборудования, которые необходимы для проведения эксперимента, после чего в составе рабочей группы (бригады) проводит эксперимент под руководством преподавателя, в соответствии с изложенной методикой проведения эксперимента.

После проведения экспериментов студенты проводят обработку полученных результатов и их анализ, на основе которого формулируются выводы. Затем осуществляется защита выполненной работы (индивидуально или в составе группы) и проставляется зачет. Защита включает предоставление отчета по работе, оформленного в соответствии с требованиями, изложенными в описании к работе, обоснование полученных результатов и сделанных выводов, а также ответы на контрольные вопросы.

Лабораторные работы проводятся, как правило, в интерактивном режиме при работе в малых группах и диалоге с преподавателем с разбором конкретных ситуаций в процессе выполнения экспериментальных исследований и при защите полученных результатов.

В 3 семестре (модуль 1 и 2), по основным разделам курса, студенты выполняют курсовую работу, которая состоит из шести частей. Каждая часть курсовой работы представляет собой отдельную расчётно-графическую работу, включающую комплексную практическую задачу, базирующуюся на тематике практического занятия раздела дисциплины. Курсовая работа выполняется поэтапно. Всего предусмотрено 6 этапов. Подробное описание курсовой работы приведено в методических указаниях студентам. В 4 семестре (модуль 3), по основным разделам курса, студенты выполняют расчётно-графические работы. Каждая расчётно-графическая работа представляет собой комплексную практическую задачу, базирующуюся на тематике практического занятия раздела дисциплины. Всего предусмотрено три расчётно-графических работы. Подробное описание расчётно-графических работ приведено в методических указаниях студентам.

Одной из форм обучения является *консультация* у преподавателя. Обращаться к помощи преподавателя следует при выполнении курсовой или расчётно-графической работы, а также в любом случае, когда студенту не ясно изложение какого-либо вопроса в учебной литературе или требуется помощь в подборе необходимой дополнительной литературы.

По завершению изучения дисциплины предусмотрены: в 3 семестре зачёт с оценкой, в 4 семестре экзамен. Оценка итогов учебной деятельности студента основана на балльной накопительной системе. Для сдачи экзамена по дисциплине разработан ФОС, включающий тестовые задания и расчётное задание по проверке сформированности компетенции с методическими указаниями его выполнения и критериями оценки достижения формируемой в дисциплине подкомпетенции.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

В 3 семестре баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме до 84 баллов), посещаемость занятий (в сумме до 16 баллов). Баллами оцениваются: выполнение курсовой работы (в сумме до 50 баллов), защита курсовой работы (в сумме до - 50 баллов).

По сумме баллов выставляется итоговая оценка по предмету и итоговая оценка за курсовую работу.

В 4 семестре баллами оцениваются: выполнение каждого контрольного мероприятия в семестре (в сумме до 62 баллов), посещаемость занятий (в сумме до 18 баллов), сдача экзамена (в сумме до 20 баллов). По сумме баллов выставляется итоговая оценка по предмету.

Структура и график контрольных мероприятий доступен студенту в ОРИОКС// URL: http://orioks.miet.ru/.

Перечень контрольных мероприятий и методика их балльной оценки изложена в МУС.

PA	3P	ARC	TH	ики:
				RITZEL

Профессор Института НМСТ, д.т.н. __________/А.И. Погалов/ Доцент Института НМСТ, к.т.н. _________/С.В. Уголичиче

Рабочая программа дисциплины «Механика» по направлению подготовки - 20.03.01 <u>«Техносферная безопасность»</u> направленности (профилю) - <u>«Инженерная защита окружающей среды»</u>, разработана в Институте НМСТ и утверждена на заседании Института НМСТ 24.12.2020 года, протокол № $\underline{6}$.

Директор Института НМСТ /С.П.Тимошенков /
ЛИСТ СОГЛАСОВАНИЯ Рабочая программа согласована с выпускающим Институтом ПМТ Директор Института ПМТ /С.А. Гаврилов /
Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества Начальник АНОК /И.М.Никулина /
Программа согласована с библиотекой МИЭТ Директор библиотеки