Документ подписан простой электронной подписью

Йнформация о владельце:

ФИО: Беспалов Владимир Александрови Министерство науки и высщего образования Российской Федерации

Должность: Ректор Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 01.09.2023 15:40:15

«Национальный исследовательский университет

«Национальный исследовательский университет

Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736**tMooksobokujikathg**ти**тут** электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе

И.Г. Игнатова

E " okmethe

2020 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Физика и химия материалов функциональной электроники»

Направление подготовки -22.03.01 «Материаловедение и технологии материалов» Направленность (профиль) - «Технологии материалов и наноструктур»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

Компетенция ПК-3 «Способен прогнозировать влияние микро- и нано- масштаба на механические, физические, химические и другие свойства веществ и материалов» сформулирована на основе профессионального стандарта **40.104** «Специалист по измерению параметров и модификации свойств наноматериалов и наноструктур»

Обобщенная трудовая функция - С [6] Совершенствование процессов измерений параметров и модификации свойств наноматериалов и наноструктур

Трудовая функция- С/**01.6** Модернизация существующих и внедрение новых методов и оборудования для измерений параметров наноматериалов и наноструктур

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-3.ФХМФЭ Способен осуществлять анализ научно-технической информации офункциональных материалах	Научно-исследовательский тип задач: Совершенствование процессов измерений параметров и модификации свойств наноматериалов и наноструктур.	Знание различные методы определения физико-механических свойств материалов в порошкообразном и компактном состояниях Умение использовать современные информационно-коммуникационные технологии и глобальные информационные ресурсы для поиска информации по заданной группе материалов функциональной электроники Опыт выбора различных методов определения заданных физико-механических свойств материалов в заданном состоянии

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине:

Изучению модуля предшествует формирование компетенций в дисциплинах «Физика», «Химия» и «Математика».

Формируемые в процессе изучения модуля компетенции в дальнейшем углубляются изучением модулей «Физико-химические основы технологии интегральных микро- и наноструктур» и служат основой для выполнения индивидуального задания практики и выпускной квалификационной работы (ВКР).

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		L	L	Конт	гактная ра	бота	ы	В
Курс	Семестр	Общая трудоём кость (ЗЕ)	Общая трудоём кость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельна работа (часы)	Промежуточная
2	4	3	108	16	-	16	76	ЗаО

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа			ва		
№ и наименование модуля	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Формы текущего контроля	
1. Функциональная электроника.	4	2	-	10	Контрольная работа 1	
2. Физические явления и эффекты в функциональной электронике.	-	4	-	10	Контрольная работа 2	
3. Акусто-электроника.	2	2	-	10	Контрольная работа 3	
4. Магнитоэлектроника.	2	-	-	6	Сдача домашнего задания 1	
5. Диэлектрики.	2	2	-	12	Сдача домашнего задания 2	
6. Оптоэлектроника.	4	2	-	14	Контрольная работа 4	
7. Акустооптика.	2	4	-	14	Контрольная работа 5	

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем заня- тий (часы)	Краткое содержание
1	1	2	Основные направления твердотельной электроники. Функциональ-
			ная электроника – перспективное направление развития элементной базы электроники. Физические принципы интеграции функциональ-
			ной электроники.
	2	2	Основные направления и типичные устройства функциональной
			электроники. Области разработок и применения функциональных
			устройств. Основные сведения о материалах функциональной электроники.
3	3	2	Механические свойства кристаллов. Деформации. Напряжения. За-
			кон Гука для кристаллов. Модуль Юнга. Упругие волны в кристаллах. Возбуждение и регистрация упругих волн. Акустоэлектроника.
4	4	2	Магнитные свойства кристаллов. Классификация магнитных ве-
			ществ. Диамагнетизм. Парамагнетизм. Типы магнитных структур в
			кристаллах. Ферро-, антиферро- и ферримагнетики. Физические
			процессы в магнитных материалах и их свойства. Технологии материалов магнитоэлектроники. Запоминающие и логические устройст-
			ва магнитоэлектроники.
5	5	2	Электрические свойства кристаллов. Поляризация, электропровод-
			ность и диэлектрические потери. Физические процессы в диэлектри-
			ках и их свойства. Активные диэлектрики. Классификация активных
			диэлектриков. Пироэлектрические явления. Пьезоэлектрический эф-
		2	фект и электрострикция.
6	6	2	Распространение электромагнитных волн в анизотропных кристал-
			лах. Оптические свойства кристаллов. Двойное лучепреломление. Оптическая индикатриса. Влияние симметрии кристалла. Интеграль-
			ная оптика. Теория оптических волноводов.
	7	2	Элементы интегральной оптики. Методы изготовления волноводов.
			Материалы для интегральной оптики. Интегрально-оптические уст-
			ройства и оптические интегральные схемы для систем передачи и
			обработки информации. Волоконная оптика. Распространение волн в
			электрооптических кристаллах. Магнитооптический эффект.
7	8	2	Фотоупругий эффект. Взаимодействие упругих волн со светом. Аку-
			стооптические модуляторы. Брэгговская дифракция. Дифракция Ра-
			мана-Ната. Поверхностная акустооптика.

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия
1	1	2	Классификация материалов. Полупроводники, диэлектрики, магнит-
			ные материалы. Технологии объемных монокристаллов и эпитакси-
			альных гомо- и гетероструктур.
2	2	2	Симметрия и анизотропия структуры и физических свойств кристал-
			лов. Основы кристаллофизики. Кристаллофизическая система коор-
			динат. Тензорное описание физических свойств кристаллов.
	3	2	Преобразования осей координат и компонент вектора и тензора.
			Матричные и тензорные обозначения. Принцип Неймана - влияние
			симметрии на свойства кристаллов. Материальные и полевые тензо-
			ры.
3	4	2	Материалы и технологии акустоэлектроники. Устройства акусто-
			электроники на объемных и поверхностных акустических волнах.
5	5	2	Пассивные диэлектрики. Неорганические стекла, ситаллы, керами-
			ка.Сегнетоэлектрики, пьезоэлектрики, пироэлектрики – требования,
			свойства, получение и применение.
6	6	2	Волоконно-оптические линии связи. Электрооптика. Линейный и
			квадратичный электрооптические эффекты. Влияние симметрии.
			Материалы электрооптики. Электрооптические устройства.
7	7	2	Материалы и технологии акустооптики. Акустооптические материа-
			лы и их влияние на характеристики устройств. Применение акусто-
			оптических устройств для обработки сигналов.
	8	2	Термоэлектрические эффекты в кристаллах. Физические основы
			криоэлектроники. Области применения и современное состояние.
			Материалы термо- и криоэлектроники.

4.3. Лабораторные работы

Не предусмотрены

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС	
1-7	17	Изучение теоретического материала в объеме лекций	
	21	Подготовка к практическим занятиям	
	25	Выполнение и подготовка к сдаче домашних заданий 1,2	
	13	Подготовка к контрольным работам 1-5	

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМО-СТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов, представленное в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Модули 1-7

- ✓ Методические указания для студентов по организации самостоятельной работы по дисциплине: «Физика и химия материалов функциональной электроники»
- ✓ Курс Лекций
- ✓ Презентации Лекций
- ✓ Примеры типовых заданий к практическим занятиям

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Елисеев А.А. Функциональные наноматериалы : Учеб. пособие / А.А. Елисеев, А.В. Лукашин; Под ред. Ю.Д. Третьякова. М. : Физматлит, 2010. 456 с. ISBN 978-5-9221-1120-1
- 2. Наноэлектроника: теория и практика: Учебник / В.Е. Борисенко, А.И. Воробьева, Е.А. Уткина, А.Л. Данилюк. 4-е изд., электронное. М.: БИНОМ. Лаборатория знаний, 2015. 369 с. (Учебник для высшей школы). URL: https://e.lanbook.com/book/84103 (дата обращения: 15.12.2020). ISBN 978-5-9963-2943-4.
- 3. Барыбин А.А. Электроника и микроэлектроника. Физико-технологические основы. М.: Физматлит, 2006. 424 с.- ISBN 5-9221-0679-1
- 4. Пасынков В.В. Материалы электронной техники / В.В. Пасынков, В.С. Сорокин. 2-е изд., перераб. и доп. М. : Высшая школа, 1986. 367 с.
- 5. Чупрунов Е.В. Основы кристаллографии : Учеб. для вузов / Е.В. Чупрунов, А.Ф. Хохлов, М.А. Фаддеев. М. : Физматлит, 2004. 500 с. ISBN 5-94052-060-1

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОН-НЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. **eLIBRARY.RU:** научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru (дата обращения: 10.09.2020). Режим доступа: для зарегистрир. пользователей.
- 2. **Российская государственная библиотека**: сайт. Москва, 1999-2020. URL: http://www.rsl.ru (дата обращения: 10.09.2020).
- 3. **Академия Google : научная поисковая система**: сайт. URL: http://scholar.google.ru (дата обращения: 10.09.2020).
- 4. **SCOPUS:** библиографическая и реферативная база данных научной периодики: сайт. URL: www.scopus.com (дата обращения: 20.09.2020). Режим доступа: для авториз. пользователей МИЭТ

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение (реализовывается с применением электронного обучения и дистанционных образовательных технологий).

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС(http://orioks.miet.ru).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: электронная почта, ПО Zoom.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень про- граммного обеспе- чения
Учебная аудитория	доска	Не требуется
Учебная аудитория № 4136	Проектор Epson EB-G5600,	OC Windows
«Лаборатория микроско-	мультимедийный комплекс,	MS Office
пии»	компьютер, принтер	браузер
Помещение для самостоя-	Помещение, оснащенное компью-	OC Microsoft Win-
тельной работы	терной техникой, с возможностью	dows 7
	подключения к сети «Интернет» и	MS Office
	обеспечением доступа в электрон-	2007/2010, Internet
	ную информационно-	Explorer/Chrome
	образовательную среду МИЭТ	

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции **ПК-3.ФХМФЭ** «Способен осуществлять анализ научнотехнической информации о функциональных материалах».

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИ-OKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

В процессе освоения дисциплины студенты самостоятельно готовят и выполняют предусмотренные контрольные задания на проверку усвоения необходимых знаний в форме контрольных работ, на проверку умений и опыта деятельности — в форме защиты (представления) индивидуальных домашних заданий, результат выполнения которых отражается в накопительной балльной системе.

Контроль выполнения студентами индивидуальных практических заданий (подготовка рефератов на заданную тему) проводится на семинарах. Студенты выступают с докладом на семинаре, анализируя различные аспекты освещаемой проблемы, происходит обсуждение информации в формате научной дискуссии.

12.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительнобалльная система. Баллами оценивается выполнение каждого контрольного мероприятия в семестре, активность и посещаемость занятий, ответ на зачете (в сумме 100 баллов). По сумме баллов выставляется итоговая оценка по предмету.

20 баллов, отводимые на зачет, могут быть добавлены как премиальные, если студент в установленный срок выполнил все задания в рамках контрольных мероприятий и набрал минимально необходимое количество баллов.

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка		
Менее 50	2		
50 – 69	3		
70 – 85	4		
86 – 100	5		

Разработчик:

Доцент Института ПМТ, к.т.н.

О.В.Воловликова

Рабочая программа дисциплины «Физика и химия материалов функциональной электроники» по направлению подготовки 22.03.01 «Материаловедение и технологии материалов» направленности (профилю) «Технологии материалов и наноструктур» разработана в Институте ПМТ и утверждена на заседании Ученого совета Института ПМТ 30 сентября 2020 года, протокол № 39.

	к.т.н., доцент	Militiy	/А.В. Железнякова/
		Лист согласовани	я
	Рабочая программа согласована оценки качества	с Центром подгото	вки к аккредитации и независимой
I	Начальник АНОК	-f5-	_И.М.Никулина
I	абочая программа согласована с	библиотекой МИЭТ	
/)	Директор библиотеки	Mize	/Т.П.Филиппова/