Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александрович

МИНОБРНАУКИ РОССИИ

Должность: Ректор МИЭТ Федеральное государственное автономное образовательное учреждение высшего образования дата подписания: 07.09.7023 15:54:10

«Национальный исследовательский университет Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736**«Можковский и́ийститут электронной техники»**

УТВЕРЖДАЮ

Проректор по учебной работе

Игнатова И.Г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Технологии наноматериалов»

Направление подготовки - 28.03.03 «Наноматериалы» Направленность (профиль) - «Инженерия наноматериалов»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенции ОП	Подкомпетенции, формируемые в дисцип- лине	Индикаторы достижения ком- петенций
ОПК-2 Способен	ОПК-2.ТНМ Способен	Знание принципов, лежащих в
осуществлять про-	осуществлять анализ кри-	основе технологических процес-
фессиональную дея-	тических ограничений раз-	сов
тельность с учетом	работанной технологии	Умение выделять основные па-
экономических, эко-		раметры технологического про-
логических, социаль-		цесса
ных и других ограни-		Опыт объяснения и применения
чений на всех этапах		научных принципов, лежащих в
жизненного цикла		основе технологических процес-
объектов, систем и		сов, при формировании материа-
процессов		лов
ОПК-5 Способен	ОПК-5.ТНМ Способен	Знание особенностей техноло-
принимать обосно-	обоснованно выбирать ме-	гических процессов
ванные технические	тодики и процессы при раз-	Умение выявлять информацию
решения в профес-	работке технологии созда-	о технологических процессах
сиональной деятель-	ния материала или структу-	Опыт описания сути технологи-
ности, выбирать эф-	ры с заданными характери-	ческих процессов и их обосно-
фективные и безопас-	стиками	ванного выбора при создании
ные технические		интегральных микросхем
средства и техноло-		
ГИИ		

Компетенция ПК-6 «Способен разрабатывать и проводить процессы модификации свойств наноматериалов и наноструктур» **сформулирована на основе профессионального стандарта 40.104** «Специалист поизмерению параметров и модификации свойств наноматериалов и наноструктур»

Обобщенная трудовая функция - С [6] Совершенствование процессов измерений параметров и модификации свойств наноматериалов и наноструктур

Трудовые функции- C/01.6 Модернизация существующих и внедрение новых методов и оборудования для измерений параметров наноматериалов и наноструктур

С/02.6 Модернизация существующих и внедрение новых процессов и оборудования для модификации свойств наноматериалов и наноструктур

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения под- компетенций
ПК-6.ТНМ Способен	- участие в производстве	Знание типов/видов дефектов,
применять знания о	наноматериалов и наноси-	возникающих при проведении
физико-химических	стем с заданными техноло-	технологических операций
процессах, проте-	гическими и функциональ-	Умение выявлять основные фак-
кающих в материалах	ными свойствами, проекти-	торы, влияющие на дефектообра-
при их получении,	ровании высокотехноло-	зование при проведении техно-
обработке и модифи-	гичных процессов в составе	логических операций
кации	первичного проектно-	Опыт обоснования причин появ-
	технологического или ис-	ления дефектов и определения
	следовательского подразде-	правильных технологических
	ления;	решений
	– контроль качества вы-	
	пускаемой продукции	

Компетенция ПК-7 «Способен осуществлять научно-техническое и методическое сопровождение в производстве полупроводниковых приборов и систем с использованием нанотехнологий» **сформулирована на основе профессиональных стандартов:**

29.008 «Специалист по технологии производства микро- и наноразмерных электромеханических систем»

Обобщенная трудовая функция - А[6] Моделирование технологических модулей и процессов для производства микро- и наноразмерных электромеханических систем

Трудовые функции- А/01.6 Анализ конструкций и технологий изготовления микро- и наноразмерных электромеханических систем по существующим источникам информации **А/02.6** Определение этапов изготовления электромеханической системы, формирование перечня оборудования и последовательности необходимых для ее изготовления технологических модулей и единичных операций

А/03.6 Моделирование и расчет требуемых входных и выходных параметров технологических операций

40.008 «Специалист по организации и управлению научно-исследовательскими и опытно-конструкторскими работами»

Обобщенная трудовая функция - С [6] Совершенствование процессов измерений параметров и модификации свойств наноматериалов и наноструктур

Трудовые функции- C/01.6 Модернизация существующих и внедрение новых методов и оборудования для измерений параметров наноматериалов и наноструктур

С/02.6 Модернизация существующих и внедрение новых процессов и оборудования для модификации свойств наноматериалов и наноструктур

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения под- компетенций
ПК-7.ТНМ Способен	- участие в производстве	Знание основных процессов
использовать основы	наноматериалов и наноси-	протекающих при проведении
проектирования тех-	стем с заданными техноло-	технологических процессов
нологических процес-	гическими и функциональ-	Умение определять физико-
СОВ	ными свойствами, проекти-	химическую суть протекающих
	ровании высокотехноло-	процессов
	гичных процессов в составе	Опыт обоснования поведения
	первичного проектно-	системы на основе ее физико-
	технологического или ис-	химических свойств
	следовательского подразде-	
	ления	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть Блока 1 «Дисциплины (модули)» образовательной программы.

Изучению дисциплины предшествует формирование компетенций в дисциплинах «Органическая химия», «Аналитическая химия», «Основы вакуумной техники», «Безопасность жизнедеятельности», «Физика и химия материалов функциональной электроники», «Физическая химия».

Формируемые в процессе изучения дисциплины компетенции в дальнейшем углубляются изучением дисциплины «Процессы микро- и нанотехнологии», выполнением индивидуального задания практики и служат основой для выполнения выпускной квалификационной работы (ВКР).

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

			J	.	Ко	нтактная ра	бота	я-	r.	J
;	Курс	Семестр	Общая трудоёмкость (3E)	Общая трудоёмкост (часы)	Лекции (часы)	Практическая под- готовка при прове- дении лабораторных работ (часы)	Практические заня- тия (часы)	Самостоятельная ра бота (часы)	В том числе - Прак- тическая подготовка при выполнении курсовой работы (проекта)	Промежуточная ат тестация
	3	5	6	216	32	32	16	100	42	КР, Экз(36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Ко	нтакті	ная работа		- K-	
№ и наименование модуля	Лекции	Практические занятия	Практическая под- готовка при прове- дении лаборатор- ных работ (часы	Самостоятельная работа	В том числе - Практическая подготов- ка при выполнении курсовой работы (проекта)	Формы теку- щего контроля
1. Эпитаксия.	6	8	8	22	6	Тестирование Защита ЛР
2. Диэлектрические слои	2	2	4	9	4	Защита ЛР
3. Пайка, сварка	2	-	-	5	2	Доклад
4. Технология тон-ких пленок	8	-	16	22	6	Тестирование Защита ЛР
5. Резка, шлифование, полирование	- 2 - -		5	4	Доклад	
6. Обработка по- верхности	2	-	-	5	4	Доклад
7. «Сухое» травление	4	2	4	9	4	Тестирование Доклад Защита ЛР
8. Диффузия	2	2	-	7	4	Доклад
9. Ионная имплантация	2	2	-	8	4	Доклад
10. Фотолитография	2	-	-	8	4	Тестирование
Part Part Part Part Part Part Part Part				,	-	Доклад

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
	1	2	Предмет, цель и задачи курса. Пути развития интегральных микро- и нанотехнологий. Терминология. Общая классификация физико-химических процессов технологии микроэлектроники. Физико-химические основы процессов нанесения вещества на поверхность твердой фазы — подложки. Классификация процессов нанесения.
1	2	2	Существующие представления о механизмах зародышеобразования и роста новой фазы. Теории роста кристаллов. Ориентированное и неориентированное нарастание. Феноменологические гипотезы эпитаксии. Прогнозирование вероятности и характера протекания процессов эпитаксии с использованием критериев физико-химического взаимодействия веществ.
	3	2	Физико-химические основы автоэпитаксии кремния. Термодинамический анализ системы Si-H-Cl. Кинетика и механизм кристаллизации эпитаксиальных слоев кремния в хлоридном процессе. Гидридный процесс автоэпитаксии кремния. Аппаратное оформление автоэпитаксии кремния. Гетероэпитаксия кремния. Газофазная и жидкофазная эпитаксия полупроводниковых соединений (на примере А ^{III} B ^V). Хемоэпитаксия.
2	4	2	Диэлектрические пленки в технологии микроэлектроники. Механизм и кинетика термического окисления кремния. Химические и электрохимические методы получения диэлектрических пленок. Газофазные методы осаждения диэлектрических пленок.
3	5	2	Процессы пайки и сварки в технологии микроэлектроники. Характер и проблемы межфазного взаимодействия в процессах пайки и сварки в технологии микроэлектроники.
	6	2	Вакуум-термическое испарение и конденсация. Зависимость свойств тонких пленок от условий нанесения.
	7	2	Резистивный и электронно-лучевой методы нанесения тонких пленок металлов, сплавов и соединений.
4	8	2	Ионно-плазменное распыление. Структура тлеющего разряда. Катодное нанесение тонких пленок металлов, сплавов и соединений. Реактивное ионно-плазменное нанесение тонких пленок.
	9	2	Триодное и магнетронное нанесение тонких пленок металлов, сплавов и соединений. Химическое и электрохимическое осаждение тонких пленок металлов, сплавов и соединений.

5	10	2	Теоретические основы и классификация процессов удаления вещества с поверхности твердой фазы. Механическое удаление вещества. Механизм процессов резки, шлифовки и полировки пластин кремния. Основные закономерности процессов. Нарушенный слой и его структура. Оценка качества механической обработки пластин.
6	11	2	Пути попадания загрязнений на поверхность подложки. Классификация основных видов загрязнений. Технологические процессы очистки поверхности подложки. Химическое и электрохимическое удаление вещества с поверхности твердой фазы.
	12	2	Классификация процессов сухого травления. Ионное травление. Особенности переноса изображения с маски на рабочий материал при ионном травлении. Оборудование для ионно-лучевого травления.
7	13	2	Номенклатура рабочих газов. Плазмохимическое и ионно-химическое травление. Процессы сухого травления высокоплотной плазмой. ITP и ICP реакторы.
8	14	2	Теоретические основы процессов перераспределения вещества. Механизмы диффузии. Основные законы диффузии. Диффузия примесей в кремнии. Особенности термодиффузионных процессов.
9	15	2	Ионное легирование полупроводников. Модель Линхарда-Шарфа- Шиотта. Классификация технологического оборудования для ионной имплантации.
10	16	2	Физико-химические основы процессов фотолитографии в технологии микроэлектроники. Прямая и обратная фотолитографии. Основы фотохимии. Фоторезисты. Основные операции фотолитографического процесса. Формирование слоя резиста, формирование защитного рельефа, передача изображения на подложку. Особенности переноса изображения в нанометровой области размеров элементов. Электронно- и рентгенолитография.

4.2. Практические занятия

№ модуля диспиплины	№ практического занятия	Объем занятий (часы)	Наименование занятия
1	1	2	Прогнозирование вероятности протекания эпитаксиальных процессов по диаграммам фазовых равновесий.
	2	2	Расчет параметров жидкофазной эпитаксии по диаграммам фазовых

			равновесий. Контрольная работа №1	
	3	2	Термодинамический анализ системы Si-Cl-H. Расчет составляющих ав-	
		1	толегирования.	
	4	2	Изучение тепло- и массопереноса в газофазных процессах. Контрольная	
	7	2	работа №2.	
			Изучение кинетики локального окисления кремния. Маскирующие	
2	5	2	свойства диоксида кремния. Сегрегация примесей на границе раздела	
			кремний-диоксид кремния.	
7	6 2	2	Расчет параметров процесса плазмохимического травления. Интерак-	
_ ′		0	0	2
8	7	2.	Интерактивное занятие по модулю «Диффузия». Расчет параметров	
0			процесса термодиффузии.	
9	9 8	2.	Расчет параметров процесса ионной имплантации. Глубокая импланта-	
9	0		ция ионов кислорода (азота)	

4.3. Практическая подготовка при проведении лабораторных работ

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Наименование работы				
	1	4	Изучение влияния режимов эпитаксии на микроморфологию поверхно-				
1			сти АЭС кремния				
	2	4	Изучение газофазной составляющей автолегирования.				
2	3	4	Изучение кинетики локального окисления кремния				
	4	4	Вакуум-термическое нанесение тонких пленок.				
4	5	4	Ионно-плазменное нанесение тонких пленок.				
	6 4 Магнетронное нанесение тонких пленок.		Магнетронное нанесение тонких пленок.				
7	7	4	Ионное травление в технологии наноэлектроники.				
Q	8 8	4	Влияние режимов процесса диффузии на глубину залегания р-п пере-				
0		+	хода				

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
	4	Изучение теоретического материала в объеме лекций
1	6	Подготовка к практическому занятию и контрольной работе
	4	Подготовка к лабораторным работам

	2	Подготовка к тесту
	6	Практическая подготовка при выполнении курсовой работы
	1	Изучение теоретического материала в объеме лекций
2	2	Подготовка к практическому занятию и контрольной работе
2	2	Подготовка к лабораторным работам
	4	Практическая подготовка при выполнении курсовой работы
	1	Изучение теоретического материала в объеме лекций
3	2	Подготовка к практическому занятию и контрольной работе
	2	Практическая подготовка при выполнении курсовой работы
	4	Изучение теоретического материала в объеме лекций
4	4	Подготовка к тесту
4	8	Подготовка к лабораторным работам
	6	Практическая подготовка при выполнении курсовой работы
5	1	Изучение теоретического материала в объеме лекций
3	4	Практическая подготовка при выполнении курсовой работы
6	1	Изучение теоретического материала в объеме лекций
0	4	Практическая подготовка при выполнении курсовой работы
	1	Изучение теоретического материала в объеме лекций
7	2	Подготовка к практическому занятию и контрольной работе
/	2	Подготовка к лабораторным работам
	4	Практическая подготовка при выполнении курсовой работы
	1	Изучение теоретического материала в объеме лекций
8	2	Подготовка к практическому занятию и контрольной работе
	4	Практическая подготовка при выполнении курсовой работы
	2	Изучение теоретического материала в объеме лекций
9	2	Подготовка к практическому занятию и контрольной работе
	4	Практическая подготовка при выполнении курсовой работы
	2	Изучение теоретического материала в объеме лекций
10	2	Подготовка к тесту
	4	Практическая подготовка при выполнении курсовой работы

4.5. Примерная тематика курсовых работ (проектов)

Примеры тем:

- 1. Разработка процесса осаждения эпитаксиального слоя n-Si на n+-Si подложке
- 2. Разработка процесса осаждения эпитаксиального слоя n-Si на сапфире
- 3. Разработка процесса осаждения тонкой пленки алюминия толщиной 500 нм на SiO₂
- 4. Разработка процесса осаждения тонкой пленки TiN толщиной 100 нм на SiO₂

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМО-СТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Модуль 1 «Эпитаксия»

- ✓ материалы для изучения теории в рамках подготовки к практическим, лабораторным занятиям;
- ✓ материалы для подготовки к контрольным работам, тестам.

Модуль 2 «Диэлектрические слои»

- ✓ материалы для изучения теории в рамках подготовки к практическим, лабораторным занятиям;
- ✓ материалы для подготовки к контрольным работам, тестам.

Модуль 3 «Пайка, сварка»

- ✓ материалы для изучения теории в рамках подготовки к практическим, лабораторным занятиям;
- ✓ материалы для подготовки к контрольным работам, тестам.

Модуль 4 «Технология тонких пленок»

- ✓ материалы для изучения теории в рамках подготовки к практическим, лабораторным занятиям;
- ✓ материалы для подготовки к контрольным работам, тестам.

Модуль 5 «Резка, шлифование, полирование»

- ✓ материалы для изучения теории в рамках подготовки к практическим, лабораторным занятиям;
- ✓ материалы для подготовки к контрольным работам, тестам.

Модуль 6 «Обработка поверхности»

- ✓ материалы для изучения теории в рамках подготовки к практическим, лабораторным занятиям;
- ✓ материалы для подготовки к контрольным работам, тестам.

Модуль 7 «Сухое» травление»

- ✓ материалы для изучения теории в рамках подготовки к практическим, лабораторным занятиям;
- ✓ материалы для подготовки к контрольным работам, тестам.

Модуль 8 «Диффузия»

- ✓ материалы для изучения теории в рамках подготовки к практическим, лабораторным занятиям;
- ✓ материалы для подготовки к контрольным работам, тестам.

Модуль 9 «Ионная имплантация»

- ✓ материалы для изучения теории в рамках подготовки к практическим, лабораторным занятиям;
- ✓ материалы для подготовки к контрольным работам, тестам.

Модуль 10 «Фотолитография»

- ✓ материалы для изучения теории в рамках подготовки к практическим, лабораторным занятиям;
- ✓ материалы для подготовки к контрольным работам, тестам.

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Введение в процессы интегральных микро- и нанотехнологий : В 2-х т. : [Учеб. пособие для вузов]. Т. 1 : Физико-химические основы технологии микроэлектроники / Ю.Д. Чистяков, Ю.П. Райнова; Под общ. ред. Ю.Н. Коркишко. М. : БИНОМ. Лаборатория знаний, 2010. 392 с.
- 2. Введение в процессы интегральных микро- и нанотехнологий : В 2-х т. : [Учеб. пособие для вузов]. Т. 2 : Технологические аспекты / М.В. Акуленок, В.М. Андреев, Д.Г. Громов [и др.]; Под общ. ред. Ю.Н. Коркишко. М. : БИНОМ. Лаборатория знаний, 2011. 256 с
- 3. Процессы плазменного травления в микро- и нанотехнологиях : Учеб. пособие / В.А. Галперин, Е.В. Данилкин, А.И. Мочалов; Под ред. С.П. Тимошенкова. М. : БИНОМ. Лаборатория знаний, 2010. 288 с
- 4. МОП-СБИС. Моделирование элементов и технологических процессов [Текст] : Пер. с англ. / Под ред. П. Антонетти. М. : Радио и связь, 1988. 410 с.

Периодические издания

- 1. Известия вузов. Электроника: Научно-технический журнал / М-во образования и науки РФ; МИЭТ; Гл. ред. Ю.А. Чаплыгин. М.: МИЭТ, 1996 -.
- 2. Письма в журнал экспериментальной и теоретической физики = JETP Letters / Российская академия наук, Институт физических проблем им. П. Л. Капицы РАН. М. : Наука, 1965 -.
- 3. Физика твердого тела / РАН, Отделение Общей Физики и Астрономии РАН, Физикотехнический институт имени А.Ф. Иоффе РАН; Гл. ред. А.А. Каплянский. - СПб. : Наука, 1959 -. - Переводная версия PHYSICS OF THE SOLID STATE https://link.springer.com/journal/11451
- 4. Journal of applied physics [Электронный ресурс] / American Institute of Physics. USA : AIP. На сайте https://aip.scitation.org/journal/jap представлены электронные версии статей с 1931 г. Режим доступа: в сети МІЕТ
- 5. Applied physics A [Электронный ресурс] : Materials Science & Processing. : Springer, 1973 . Выходит 16 раз в год. URL : http://link.springer.com/journal/339

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. **Лань:** электронно-библиотечная система. Санкт-Петербург, 2011. URL: https://e.lanbook.com/(дата обращения: 21.09.2020). Режим доступа: для авториз. пользователей МИЭТ.
- 2. **Юрайт:** Электронно-библиотечная система: образовательная платформа. Москва, 2013. URL: https://urait.ru/ (дата обращения: 05.09.2020). Режим доступа: для авторизированных пользователей МИЭТ.

- 3. **eLIBRARY.RU**: научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru(дата обращения: 11.09.2020). Режим доступа: для зарегистрир. пользователей.
- 4. **Российская государственная библиотека:** сайт. Москва, 1999-2020. URL: http://www.rsl.ru (дата обращения: 10.09.2020).
- 5. **GoogleScholar**: сайт. США, 2004: URL: https://scholar.google.ru. (дата обращения: 10.09.2020). Режим доступа: свободный.
- 6. **ASC Publications**: сайт. URL: http://pubs.acs.org (дата обращения: 11.09.2020). Режим доступа: для авторизованных пользователей МИЭТ.
- 7. **IOPSCIENCE** : сайт. URL: https://iopscience.iop.org/partner/ecs (дата обращения: 29.09.2020).
- 8. **Springer**: сайт. URL:http://link.springer.com (дата обращения: 29.09.2020). Режим доступа: для авторизованных пользователей МИЭТ.
- 9. **SCOPUS**: Библиографическая и реферативная база данных научной периодики: сайт. URL: www.scopus.com/ (дата обращения: 20.09.2020). Режим доступа: для авторизованных пользователей МИЭТ.
- 10. **Web of Science**: сайт. Компания Clarivate, 2021. URL: http://apps.webofknowledge.com (дата обращения: 29.09.2020). Режим доступа: для авторизованных пользователей МИЭТ

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение (реализовывается с применением электронного обучения и дистанционных образовательных технологий).

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС (http://orioks.miet.ru).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудитори и помещений для самостоятельной работы	Оснащенность учебных ау- диторий и помещений для самостоятельной работы	Перечень про- граммного обес- печения
Учебная аудитория	Мультимедийное оборудование	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Crome); Acrobat reader DC

Лабораторный практикум по тонкопленочной тех- нологии №4309	вакуумная установка термического испарения УРМ-3279011; вакуумная установка магнетронного напыления УВМ-026; вакуумная установка ионноплазменного нанесения УРМ-3279014	Не требуется
Помещение для самостоя-	Помещение, оснащенное компью-	Операционная
тельной работы	терной техникой, с возможностью	система Microsoft Windo
	подключения к сети «Интернет» и	s от 7 версии и
	обеспечением доступа в электрон-	выше, Microsoft Office P
	ную информационно-	fessional Plus или Open C
	образовательную среду МИЭТ	ice, браузер (Firefox,
		Google Crome); Acrobat
		reader DC

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

- 1. ФОС по подкомпетенции **ОПК-2.THM** «Способен осуществлять анализ критических ограничений разработанной технологии».
- 2. ФОС по подкомпетенции **ОПК-5.ТНМ** «Способен обоснованно выбирать методики и процессы при разработке технологии создания материала или структуры с заданными характеристиками»
- 3. ФОС по подкомпетенции **ПК-6.ТНМ** «Способен применять знания о физикохимических процессах, протекающих в материалах при их получении, обработке и модификации».
- 4. ФОС по подкомпетенции **ПК-7.ТНМ** «Способен использовать основы проектирования технологических процессов».

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды ОРИ-OKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

В соответствии с программой лекционный курс включает 10 модулей. Каждый из модулей рассматривает отдельный базовый процесс технологии микро- и наноэлектроники, поэтому порядок освоения модулей может быть произвольным. Однако рекомендуется следующая последовательность освоения материала: вначале процессы, касающиеся осаждения материалов (модули 1-4), далее процессы, касающиеся удаления материалов (модули 5-7), потом процессы перераспределения (модули 8,9), и в завершение процесс литографии (модуль 10).

Для закрепления знаний, полученных на лекционных занятиях и при выполнении самостоятельной работы, а также для получения навыков исследовательской и практической работы на лабораторном оборудовании и установках, проводятся лабораторные работы. Лабораторные работы проводятся, как правило, в интерактивном режиме при работе в малых группах и диалоге с преподавателем с разбором конкретных ситуаций в процессе выполнения экспериментальных исследований и при защите полученных результатов.

В рамках выполнения *курсовой работы* студенты осуществляют разработку технологического цикла формирования структур с заданными параметрами и характеристиками.

Студент должен осуществить обоснованный выбор соответствующего технологического процесса для формирования конкретной структуры (материала) для конкретных целей и условий эксплуатации:

- обосновать выбор процесса формирования с учетом дальнейших условий эксплуатации или проведения последующих технологических операций;
 - расписать все необходимые расходные материалы;
 - описать способы и методы подготовки образцов;
- рассчитать параметры и условия проведения выбранного технологического процесса формирования заданной структуры (материалов).

По завершении обучения проводится публичное представление результатов выполнения курсовой работы.

Все материалы публикуются в ОРИОКС с помощью сервиса «Портфолио». Портфолио формируется на основании результатов всех мини-групп и каждый студент группы имеет доступ к данному сервису в полном объеме.

11.2. Система контроля и оценивания

По завершению изучения дисциплины предусмотрен экзамен, при этом оценка итогов учебной деятельности студента основана на накопительно — балльной системе. Для сдачи экзамена по дисциплине разработаны ФОСы, включающие тестовые задания и практико-ориентированного задания по проверке сформированности подкомпетенций с методическими указаниями по их выполнению и критериями оценки.

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка
Менее 50	2
50 – 70	3
71 – 85	4
86 – 100	5

Разработчик:

Профессор института ПМТ, д.т.н., профессор

Громов Д.Г.

Рабочая программа дисциплины «Технологии наноматериалов» по направлению подготовки 28.03.03 «Наноматериалы», направленности (профилю) «Инженерия наноматериалов» разработана в Институте перспективных материалов и технологий и утверждена на заседании Ученого совета Института $\underline{30}$ сентября $\underline{2020}$ года, протокол № $\underline{39}$

Зам. директора Института к.т.н., доцент	/А.В. Железнякова/		
	Лист согласования		
Рабочая программа согласов мой оценки качества Начальник АНОК	зана с Центром подготовки к аккредитации и независи-		
Рабочая программа согласована с библиотекой МИЭТ			
Директор библиотеки	у /Т.П.Филиппова/		