Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александ ОТИН И высшего образования Российской Федерации

Должность: Ректор МИЭТ Дата подписания: 01.09.2023 14:22:42

Уникальный программный ключ: «Национальный исследовательский университет

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736**М@корезвайзинсэ**гитут электронной техники»

УТВЕРЖДАЮ

Проректор получерной работе

И.Г. Игнатова

OF " ocolope 20201

МΠ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Электродинамика и распространение радиоволн»

Направление подготовки – 11.03.01 «Радиотехника»

Направленность (профиль) – «Эксплуатация и испытания радиоинформационных систем»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

Компетенции	Подкомпетенции, формируемые в дисциплине	Индикаторы достижения компетенций	
ОПК-1 Способен	ОПК-1.ЭДиРР Способен	Знает: фундаментальные	
использовать	использовать положения,	положения и законы	
положения, законы и	законы и методы	электродинамики.	
методы естественных	электродинамики для	Умеет: применять законы	
наук и математики	решения задач расчета и	электродинамики и	
для решения задач	моделирования объектов	математические методы для	
инженерной	высокочастотной техники	решения задач расчета и	
деятельности		моделирования объектов	
		высокочастотной техники.	
		Опыт деятельности: решения	
		задач расчета структуры	
		переменных полей, параметров	
		плоских волн в различных средах	
		и линиях передачи, согласующих	
		устройств СВЧ, радиолинии в	
		присутствии Земли.	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть Блока 1 «Модули (дисциплины)» образовательной программы.

Входные требования к дисциплине — необходимо владеть компетенциями, методами расчетов и представлениями, сформированными в дисциплинах математического и естественнонаучного цикла.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		сть	сть	Контан	стная раб	ота		
Курс	Семестр	Общая трудоёмкос (3E)	Общая трудоёмкост (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
3	5	5	180	48	16	32	48	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контакті	ная работа		x	
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля
Модуль 1 Теория	12	8	12	14	Защита ЛР
электромагнитного поля	12	8	12	14	Сдача ДЗ
					Защита ЛР
Модуль 2 Теория линий передачи	10	4	8	16	Сдача ДЗ
зинин переда и					Коллоквиум №1
Модуль 3 Электромагнитные волны в	12	0	4	2	Защита ЛР
направляющих системах	12	O	4	2	Сдача ДЗ
Модуль 4 СВЧ	6		4	2	Защита ЛР
резонаторы	взонаторы 6 0 4 2			Сдача ДЗ	
Модуль 5					Защита ЛР
Распространение радиоволн в	8	4	4	14	Сдача ДЗ
условиях Земли			Коллоквиум №2		

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий	Краткое содержание
	1	2	Введение. Задачи и содержание дисциплины. Взаимосвязь курса с
			последующими дисциплинами специальности радиоинженера.
			История электричества и магнетизма. Конспект лекций.
	2	2	Уравнения Максвелла, как метод описания электромагнитного поля
			в однородных средах. Электромагнитные поля в различных средах и граничные условия электродинамики. Л.1. с. 12 -23.
	3	2	Энергия электромагнитного поля. Теорема Умова-Пойнтинга.
			Излучение электромагнитных волн.Волновые уравнения.
			Электродинамические потенциалы и векторы Герца. Понятие о зонах
1			излучения и диаграмме направленности источника
			электромагнитных волн.Л.1, с.24 -36
	4	2	Элементарные излучатели. Электромагнитные волны: плоские,
			сферические, цилиндрические – решения волнового уравнения. Л.1,
			c.37 - 67
	5	2	Отражение плоской волны от границы раздела сред. Важные
			теоремы электродинамики. Л.1, с.37 - 67
	6	2	Разбор и обобщение материала по первому модулю.
	7	2	Применение теории цепей для анализа линий передачи. Применение
			теории электромагнитного поля для анализа линий передачи
			Обобщенная линия передачи без потерь. Л.1, с. 77 - 101
	8	2	Трансформация полного сопротивления и коэффициента отражения
			вдоль линии передачи. Диаграмма Смита. Л.1, с. 77 - 101
2	9	2	Понятие о согласовании сопротивлений. Согласование посредством
			сосредоточенных параметров. Четвертьволновый трансформатор
			сопротивлений.Л.1,с.102-136
	10	2	Многосекционные трансформаторы.Шлейфные трансформаторы
			сопротивлений. Л.1, с.102-136.
	11	2	Коллоквиум по 1 - 2 модулям курса
	12	2	Электромагнитные волны в направляющих системах.
			Классификация линий передачи и их основные характеристики.
			Типы волн. Фазовая и групповая скорости. Дисперсия.Л.2, с.80-86.,
3			Л.4. с. 144 -145
)	13	2	Волноводы. Электромагнитные поля в двухпластинчатом волноводе.
			Л.1, с.99-106.,
	14	2	Волноводы. Электромагнитные поля в прямоугольном волноводе.
			Волна Н10.Л.2, с.99-106.

№ модуля дисциплины	№ лекции	Объем занятий	Краткое содержание
	15	2	Волны в круглых волноводах. Затухание волн в волноводах.
			Особенности волн Н01 в круглом волноводе. Л.2, с.99-106.
	16	2	Электромагнитные поля в коаксиальной линии. ТЕМ-волна. Л.2, с. 86-90.
	17	2	Электромагнитные волны в полосковых линиях передачи. Квази-
			ТЕМ приближение. Эффективная диэлектрическая проницаемость
			микрополосковой линии. Волновое сопротивление. Длина волны в
			линии. Затухание волн в микрополосковых линиях. Л.3, с. 92-95. Л.1.
			c. 177 - 187
	18	2	Резонаторы. Собственные колебания в объемном резонаторе.
			Добротность объемного резонатора.
4	19	2	Типы волн в прямоугольном и круглом резонаторах. Л.4, с.206-220.
	20	2	Резонаторы в виде отрезков линий передачи с ТЕМ-волной. Л.4, c.221-222.
	21	2	Распространение радиоволн в свободном пространстве. Влияние
			земной поверхности на распространение радиоволн. Л.4, с. 296-308,
5			315-317.
5	22	2	Строение атмосферы. Особенности распространения радиоволн в
			тропосфере. Л.4, с. 325-350.
	23	2	Траектория радиоволн в ионосфере. Л.4, с. 351-357.
	24	2	Коллоквиум по 3 -5 модулям курса

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Краткое содержание
	1	4	Элементы векторного анализа. Л.2. Глава первая
	2	4	Уравнения Максвелла. Самостоятельная работа №1., Л.2. Глава
1			вторая
	3	4	Плоские электромагнитные волны. Самостоятельная работа №2.
			Л.2. Глава пятая
	4	4	Круговая диаграмма полных сопротивлений и проводимостей.
			Основные точки и линии диаграмм. Конспект лекций.
2			Самостоятельная работа №3. Л.1. 87 - 101
	5	4	Методы узкополосного и широкополосного согласования линии с
			нагрузкой. Л.1. 102 - 117Самостоятельная работа №4

6		4	Расчет параметров волноводов. Самостоятельная работа №5. Л.2.
3			Глава седьмая
4	7	4	Расчет параметров резонаторов. Самостоятельная работа №6. Л.2.
4			Глава десятая
5	8	4	Расчет параметров радиолинии в присутствии Земли. Конспект
3			лекций

4.3. Лабораторные работы

№ модуля дисциплины	№ лабораторной работы	Объем занятий (часы)	Краткое содержание
	1	2	Элементарные излучатели радиоволн.
	2	2	Плоские электромагнитные волны. Изучаются свойства
			электромагнитных волн в различных средах с применением пакета LabView
1	3	2	Поляризация электромагнитной волны. Изучаются виды
			поляризации электромагнитных волн с применением пакета LabView
	4	2	Отражение и преломление плоской волны при нормальном падении.
			Изучаются явления отражения и преломления электромагнитных
			волн с применением пакета LabView
	5	2	Стоячие волны в линиях передачи. Измерение полных
193 1 1			сопротивлений и исследование способов согласования линий
2,3			передач СВЧ. Изучаются свойства линий передачи и явления в них
			при различных нагрузках
	6	2	Зоны Френеля. Существенная зона распространения волны.
			Изучается принцип Гюйгенса-Френеля и характер явления
			дифракции радиоволн на отверстии в экране с применением пакета
			LabView
5			Распространение радиоволн вблизи поверхности Земли. Изучается
			характер распространения радиоволн в вблизи поверхности Земли
пространстве с применением пакета LabVie			
	8	2	Распространение радиоволн в тропосфере. Изучается явление
			рефракции при распространении радиоволн в тропосфере
			пространстве с применением пакета LabView

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
	2	Выполнение ДЗ№1
	2	Подготовка к выполнению и защите ЛР№1
	2	Выполнение ДЗ№2
1	2	Подготовка к выполнению и защите ЛР№2
	2	Выполнение ДЗ№3
	2	Подготовка к выполнению и защите ЛР№3
	2	Подготовка к выполнению и защите ЛР№4
	2	Выполнение ДЗ№4
2	2	Выполнение ДЗ№5
2	2	Подготовка к выполнению и защите ЛР№5
	10	Подготовка к коллоквиуму
3	2	Выполнение ДЗ№6
4	2	Подготовка к выполнению и защите ЛР№6
	2	Подготовка к выполнению и защите ЛР№7
5	2	Подготовка к выполнению и защите ЛР№8
	10	Подготовка к Коллоквиуму

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: https://orioks.miet.ru/)

✓ Методические указания студентам по дисциплине.

Методические указания по выполнению ЛР по модулям:

Модуль 1 «Теория электромагнитного поля»:

- ✓ Для подготовки к Л.Р. 1: http://emirs.miet.ru/oroks-miet/upload/ftp/pub/2016/9/2/57da4ee720a1f/lab1_m1_mrtus_mrtus_ed_specrazdeli_niy3/7.docx
- ✓ Для подготовки к Л.Р. 2: http://emirs.miet.ru/oroks-miet/upload/ftp/pub/2016/9 2/57da4f4c5953d/lab2 m1 mrtus mrtus ed specrazdeli niy3 7.docx
- ✓ Для подготовки к Л.Р. 3: http://emirs.miet.ru/oroks-miet/upload/ftp/pub/2016/9 2/57da4f8347c01/lab3 m1 mrtus mrtus ed specrazdeli niy3 7.docx

✓ Для подготовки к Л.Р. 4: http://emirs.miet.ru/oroks-miet/upload/ftp/pub/2016/9 2/57da4fad9d839/lab4 m1 mrtus mrtus ed specrazdeli niy3 7.docx

Модуль 2 «Теория линий передачи»:

✓ Для подготовки к Л.Р. 5: http://emirs.miet.ru/oroks-miet/upload/ftp/pub/2016/9_2/57da4fc740e4b/lab5_m3_mrtus_mrtus_ed_specrazdeli_niy3 7.docx

Модуль 4 «СВЧ резонаторы»:

✓ Для подготовки к Л.Р. 6: http://emirs.miet.ru/oroks-miet/upload/ftp/pub/2016/9 2/57da4fde48df6/lab6 m3 mrtus mrtus ed specrazdeli niy3 7.docx

Модуль 5 «Распространение радиоволн в условиях Земли»:

✓ Для подготовки к Л.Р. 7: http://emirs.miet.ru/oroks-miet/upload/ftp/pub/2016/9 2/57da4ffc136fe/lab7 m3 mrtus mrtus ed specrazdeli niy3 7.docx

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Электродинамика СВЧ: Учеб. пособие: [В 2-х ч.]. Ч. 1 / К.С. Лялин, Д.В. Приходько; М-во образования и науки РФ, Федеральное агентство по образованию, МГИЭТ(ТУ). М.: МИЭТ, 2009. 192 с. Изд. выполнено в рамках инновац. образоват. программы МИЭТ "Соврем. проф. образование для рос. инновац. системы в области электроники". Имеется электронная версия издания. ISBN 978-5-7256-0533-4
- 2. Сборник задач по курсу "Электродинамика и распространение радиоволн" : Учеб. пособие для вузов / С.И. Баскаков, [и др.]; Под ред. С.И. Баскакова. 2-е изд. М. : ЛЕНАНД, 2016. 210 с. ISBN 978-5-9710-2517-7
- 3. Сомов, А. М. Электродинамика: учебное пособие / А. М. Сомов, В. В. Старостин, С. Д. Бенеславский; под редакцией А. М. Сомова. Москва: Горячая линия-Телеком, 2017. 198 с. ISBN 978-5-9912-0155-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/111103 (дата обращения: 30.08.2018). Режим доступа: для авториз. пользователей.

Периодические издания

- 4. Известия высших учебных заведений России. Радиоэлетроника : научно-практический рецензируемый журнал / ФГАОУ ВО "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова". Санкт-Петербург : СПбГЭТУ ЛЭТИ, 1998 . URL: https://re.eltech.ru/jour (дата обращения: 12.07.2018). Режим доступа: свободный.
- 5. Антенны : научно-технический и теоретический журнал / Издательство "Радиотехника". 1966 Москва Радиотехника, URL: http://radiotec.ru/ru/journal/antennas (дата обращения: 25.06.2018); URL: https://www.elibrary.ru/title about new.asp?id=7662 (дата обращения: 25.06.2018). -Режим доступа: для зарегистрированных пользователей, система заказа.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. IEEE Xplore: [электронная библиотека]: сайт. URL: www.ieeexplore.ieee.org (дата обращения: 20.03.2018)
- 2. Scopus: [крупнейшая единая база данных, содержащая аннотации и информацию о цитируемости рецензируемой научной литературы, со встроенными инструментами отслеживания, анализа и визуализации данных]: сайт. URL: www.scopus.com (дата обращения: 20.03.2018)
- 3. Web of Science: [наукометрическая реферативная база данных журналов и конференций]: сайт. URL: apps.webofknowledge.com (дата обращения: 20.03.2018)
- 4. Лань: [электронно-библиотечная система]: сайт. Санкт-Петербург, 2011. URL: http://www.e.lanbook.com/ (дата обращения: 20.03.2018)

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации дисциплины используется смешанное обучение, в основе которого лежит интеграция технологий традиционного и электронного освоения компетенций, в частности за счет использования таких инструментов как видеолекции, онлайн тестирование, взаимодействие со студентами в электронной образовательной среде.

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС.

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта, сервисы видеоконференцсвязи и социальные сети.

В процессе обучения при проведении занятий и для самостоятельной работы используются **внутренние** электронные ресурсы в формах тестирования в ОРИОКС и MOODLe.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Компьютер с мультимедийным оборудованием.	Операционная система Windows 10; Пакет программ Microsoft Office; Acrobat reader.

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Компьютерная аудитория	Компьютерная техника с	Операционная система
	возможностью подключения	Windows 10;
	к сети «Интернет» и	Пакет программ Microsoft
	обеспечением доступа в	Office;
	ОРИОКС;	Acrobat reader.
		LABVIEW
Помещение для	Компьютерная техника с	Операционная система
самостоятельной работы	возможностью подключения	Windows 10;
обучающихся	к сети «Интернет» и	Пакет программ Microsoft
	обеспечением доступа в	Office;
	ОРИОКС	Acrobat reader.

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ ФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

1. ФОС по подкомпетенции ОПК-1.ЭДиРР «Способен использовать положения, законы и методы электродинамики для решения задач расчета и моделирования объектов высокочастотной техники».

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды:

ОПК-ЭДиРР ОРИОКС// URL: http://orioks.miet.ru/...

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Материал курса разбит на 5 модулей, объединенных общей тематикой. Каждый модуль содержит от 1 до 3 занятий. Весь курс рассчитан на 180 часов. Из них 96 часов – аудиторные занятия, 48 часов отводится на самостоятельную работу и 36 часов на подготовку к экзамену. В течение всего семестра студенты выполняют практические занятия, в ходе которых каждый студент на каждом из занятий получает оценки за выполнение заданий в ходе занятия и выполнение домашнего задания. В процессе обучения на основе контроля текущей успеваемости и учета систематичности работы (посещаемости занятий и своевременности выполнения заданий) формируется интегральная оценка уровня подготовленности студента по данному предмету – рейтинг. Для допуска к сдаче экзамена по предмету студент должен отработать все контрольные мероприятия, а также сдать коллоквиумы на оценку выше неудовлетворительно.

При подготовке к практическому занятию необходимо прежде всего изучить методическую разработку по данному занятию, лекционный материал, рекомендованную основную и дополнительную литературу. В обязательном порядке следует разобрать приведенные примеры решения типовых задач и решить предлагаемые задачи.

После изучения теоретических основ каждого из модулей и выполнения мероприятий самостоятельной подготовки студентам предлагается выполнить расчетнографические задачи на практических занятиях модуля. При этом оценка работы студентов производится по следующим критериям и механизмам:

Студент при подготовке к занятию выполняет индивидуальное задание, отчет по которому предъявляется преподавателю в начале практического занятия и является основой для оценки уровня подготовленности студента к занятию. Преподаватель по анализу выполненного задания и по результатам собеседования выставляет оценку по пятибалльной системе и принимает решение о допуске студента к занятию (оценка не ниже удовлетворительно).

По трем частным оценкам (готовность к занятию, работа во время занятия, работа дома над недостатками) выставляется общая оценка за занятие.

В случае пропуска практического занятия возможно его выполнение (отработка) и выставление оценки преподавателем в зачетную неделю.

К сдаче экзамена допускаются студенты, отработавшие все практические занятия и сдавшие коллоквиумы.

Результаты работы студента в семестре учитываются при определении экзаменационной оценки.

Советы по подготовке к экзамену

При подготовке к экзамену особое внимание следует обратить на следующие моменты:

Преподавателям при подготовке к экзамену выдается список конкретных вопросов. При недостаточно полном ответе на вопрос преподаватель может дать дополнительный (необязательно прямо относящийся к вопросам билета).

Теоретические вопросы охватывают теоретическую часть курса, как аудиторные (лекционные) занятия, так и самостоятельную работу студентов по изучению учебного материала.

Коллоквиумы представляют собой мини-экзамены.

Практические вопросы представляют собой задачи, из числа отрабатываемых на практических занятиях с измененными исходными данными. Для решения таких задач экзаменуемому предоставляется компьютер с необходимыми методическими материалами.

Определяющими экзаменационную оценку являются устный ответ на экзамене.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется балльная накопительная система.

1. Коллоквиум №1 - ответы на теоретические вопросы по дисциплине. Студент получает 5 вопросов. В зависимости от качества полученных ответов начисляются баллы (максимум 9).

- 2. Коллоквиум №2 ответы на теоретические вопросы по дисциплине. Студент получает 5 вопросов. В зависимости от качества полученных ответов начисляются баллы (максимум 13).
- 3. Самостоятельные работы по домашнему заданию (6 самостоятельных работ в семестр). Студент получает 2 задачи. Если решена 1 задача студент получает 2 балла, если 2 3 балла.
- 4. Лабораторные работы (8 лабораторных работ в семестр).В зависимости от качества выполненной работы от 3 до 5. Максимальное количество баллов 5.
- 5. Дополнительно преподаватель может добавить за активность при выполнении всех заданий и работы на практических занятиях от 0 до 2 баллов.
- 6. Экзамен. Студент получает билет с 3 теоретическими вопросами и 3 задачами соответствующими разделам теории. В зависимости от качества полученных ответов и решения задач начисляются баллы от 6 до 18. Максимальное количество баллов 18 (восемнадцать)

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в OPИOKC// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИК:

Доцент Института МПСУ, к.ф.-м.н.

Зам. директора института МПСУ по ОД

<u> Т.к. /Д</u>.В. Калеев/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК

7И.М.Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

<u>/</u> Т.П.Филиппова /