Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александрови Министерство науки и высшего образования Российской Федерации

Должность: Ректор МИЭ Федеральное государственное автономное образовательное учреждение высшего образования

Дата подписания: 13.10.2023 11:19:10

«Национальный исследовательский университет

Уникальный программный ключ:

«Московский институт электронной техники»

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736d76c8f8bea882b8d602

УТВЕРЖДАЮ

Проректор по учебной работе

А.Г. Балашов

2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Компьютерное зрение»

Направление подготовки - 02.04.01 «Математика и компьютерные науки» Направленность (профиль) «Компьютерные методы моделирования, обработки и анализа данных»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании компетенции **ПК-1** «Способен исследовать и создавать компьютерные методы и алгоритмы обработки, преобразования и анализа цифровых сигналов и изображений», сформулированной в результате анализа требований к профессиональным компетенциям, предъявляемых к выпускникам на рынке труда, а также консультаций с ведущими работодателями.

Подкомпетенции, формируемые в	Задачи профессиональной	Индикаторы достижения подкомпетенций		
дисциплине	деятельности			
ПК-1.КЗ. Способен к	Разработка и	<i>Знает</i> основные методы		
реализации и применению	применение моделей и	компьютерного зрения и область		
методов обработки и	методов	их применения.		
анализа цифровых	представления,	Умеет выбирать методы и		
изображений к решению	преобразования,	алгоритмы компьютерного		
комплексных задач в	анализа данных при	зрения, дорабатывать их для		
области компьютерного	решении	решения конкретной		
зрения.	исследовательских и	практической задачи.		
	проектных задач в	<i>Имеет опыт</i> практической		
	области цифровых	реализации алгоритмов		
	систем обработки	компьютерного зрения и анализа		
	сигналов и	их достоинств и недостатков.		
	изображений			

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине:

- 1. Владение знаниями и умениями по основам информатики.
- 2. Владения знаниями и умениями по основам математического анализа, линейной алгебры и аналитической геометрии.
- 3. Владение знаниями и умениями по курсу математические основы цифровой обработки сигналов.
- 4. Владение знаниями и умениями по курсу основы компьютерного зрения.
- 5. Владение знаниями и умениями программирования на языке С++.
- 6. Владение английским языком на уровне общеобразовательной школы.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		CT.	сть	Конта	актная ј	работа				
Курс	Семестр	Общая трудоёмкость (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Практическая подготовка	Самостоятельная работа (часы)	Промежуточная аттестация	
2	3	4	144	-	20	16	12	96	ЗаО	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа				В	
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Практическая подготовка (часы)	Самостоятельная работа	Формы текущего контроля
1. Сегментация изображений и объектов	-	12	6	-	36	Защита лабораторных работ 1-3 Контроль выполнения текущей домашней
2 Дескрипторы и детекторы особенностей изображений	-	8	6	-	30	работы Защита лабораторных работ 4-5 Контроль выполнения текущей домашней работы
3. Сопоставление изображений. Стереозрение	-	-	4	12	30	Защита лабораторных работ 6-7

4.1. Лекционные занятия

Не предусмотрены

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Краткое содержание			
1	1	2	План курса. Структура. Повтор материала по сегментации			
			изображений и выделении контуров			
	2	2	Сегментация. Текстурная сегментация. Метод К-средних.			
			ФильтрыГабора. Graph Cut, Snakes			
	3	2	Сегментация движения (выделение фона). Пространственные			
			алгоритмы: Mean, MinMax, 1G, GMM. Метрики качества.			
2	4	2	Детекторы особых точек. ДетекторМоравеца, Харриса, Ши-Томаси,			
			FAST. Круговые особенности: LoG, DoG, CSS			
	5	2	Дескрипторы особых точек HOG, BRIEF, ORB, BRISK, FREAK			
	6	2	Детекторы и дескрипторы SIFT, SURF			
3	7	2	Сопоставление особых точек. ROC curve, NN Search, Kd-tree.			
			Преобразования: аффинное, проективное. ICP, RANSAC			
	8	2	Стереозрение. Эпиполярная геометрия. Ректификация			
			изображения. Калибровка стереопары. Построение карты глубины.			

4.3. Лабораторные работы

	The viscopulation provide							
№ модуля дисциплины	№ лабораторного занятия	Объем занятий (часы)	Наименование работы					
1	1	4	Сегментация. Разделение и слияние областей.					
	2	4	екстурная сегментация					
	3	4	Сегментация движения (выделение фона)					
2	4	4	Определение особых точек					
	5	4	Описание особых точек					
3	6	4	Практическая подготовка.					
			Сопоставление особых точек					
	7	8	Практическая подготовка.					
			Объединение изображений					

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	8	Изучение материалов по подготовке среды разработки на С++ для
		реализации алгоритмов компьютерного зрения
	12	Изучение материалов занятий. Анализ существующих алгоритмов
		компьютерного зрения.
	16	Выполнение и подготовка к сдаче лабораторных работ №1-3
2	14	Выполнение и подготовка к сдаче лабораторных работ №4-5
	16	Изучение материалов по теме зачетной работы
3	18	Выполнение и подготовка к сдаче лабораторных работ №6-7
	12	Выполнение зачетной работы

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: http://orioks.miet.ru/, сервер ВЦ):

Общее

✓ Методические указания студентам по изучению дисциплины

Модуль 1 «Сегментация изображений и объектов»

- ✓ Презентации к практическим занятиям 1-3
- ✓ Методические материалы к практическим занятиям
- ✓ Описания лабораторных работ 1-3
- ✓ Материалы по работе функций OpenCV https://opencv.org/(дата обращения: 25.03.2023).
- ✓ Материалы по использованию pecypca github// URL: https://docs.github.com/en/free-pro-team@latest/github (дата обращения: 25.03.2023).

Модуль 2 «Распознавание Дескрипторы и детекторы особенностей изображений»

- ✓ Презентации к практическим занятиям 4-5
- ✓ Методические материалы к практическим занятиям
- ✓ Описания лабораторных работ 4-5

Модуль 3 «Сопоставление изображений. Стереозрение»

- ✓ Презентации к практическим занятиям 6-7
- ✓ Методические материалы к практическим занятиям
- ✓ Описания лабораторных работ 6-7

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1 Гонсалес, Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. 3-е изд., испр. и доп. Москва :Техносфера, 2012. 1103 с. (Мир цифровой обработки). URL: https://e.lanbook.com/book/73514 (дата обращения: 25.03.2023)
- 2 Умняшкин С.В. Основы теории цифровой обработки сигналов : учебное пособие / С. В. Умняшкин. 5-е изд., испр. и доп. Москва : Техносфера, 2019. 550 с. (Мир цифровой обработки). URL: https://e.lanbook.com/book/140543 (дата обращения: 25.03.2023).
- 3 Умняшкин С.В. Основы цифровой обработки изображений :Учеб.пособие / С.В. Умняшкин, В.В. Лесин; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М. : МИЭТ, 2016.
- 4 Умняшкин С.В. Основы компьютерного зрения и распознавания образов : Учеб. пособие / С.В. Умняшкин, Р.В. Голованов; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М. : МИЭТ, 2019. 264 с. ISBN 978-5-7256-0914-1
- 5 Страуструп Б. Язык программирования С++ для профессионалов / Б. Страуструп. 2- е изд. М.: ИНТУИТ.РУ, 2016. 670 с. URL: https://e.lanbook.com/book/100542 (дата обращения: 25.03.2023)

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХБАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Лань: Электронно-библиотечная система Издательства Лань. СПб., 2011-. URL: https://e.lanbook.com (дата обращения: 28.10.2020). Режим доступа: для авторизированных пользователей МИЭТ
- 2. eLIBRARY.RU : Научная электронная библиотека: сайт. Москва, 2000 -. URL: https://www.elibrary.ru/defaultx.asp (дата обращения: 05.10.2020). Режим доступа: для зарегистрированных пользователей
- 3 Хабр : сайт. URL: https://habr.com/ (дата обращения: 03.10.2020). Режим доступа: своболный
- 4 GitHub : сайт. На англ. языке. URL: https://github.com/ (дата обращения: 05.10.2020).

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется **смешанное обучение**, основанное на интеграции технологий традиционного и электронного обучения, замещении части традиционных учебных форм занятий формами и видами взаимодействия в электронной образовательной среде. Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС http://orioks.miet.ru и сервисом https://github.com/.

Применяются следующие модели обучения: «расширенная виртуальная модель».

«Расширенная виртуальная модель» предполагает обязательное присутствие студентов на очных учебных занятиях с официальным преподавателем с последующим самостоятельным выполнением индивидуального задания. Работа поводится по следующей схеме:

- аудиторная работа (практическое занятие, на котором преподаватель рассказывает материалы занятия, используя слайды. Студенты могут задавать вопросы по материалам занятия, а также по заданным лабораторным работам)
- лабораторные работы выполняются и защищаются студентами на занятиях, возможна предварительная самостоятельная подготовка. Необходимо оформление пуллреквестов на стороннем сервисе https://github.com. Процедура защиты лабораторных работ подробно рассматривается на первых лекциях курса.
- проектная деятельность (в рамках курса каждый студент должен выполнить индивидуальное задание, направленное на закрепление материала и формирование навыка реализации и модификации алгоритмов компьютерного зрения)

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта преподавателя, Discord.

В процессе обучения при проведении занятий и для самостоятельной работы используются **внутренние электронные ресурсы** (<u>http://orioks.miet.ru</u>).

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Учебная доска	Операционная
	Мультимедийное оборудование	система Microsoft Windows от 7
	(компьютер с ПО и	версии и
	возможностью подключения к	выше, Microsoft Office Professional
	сети Интернет и обеспечением	Plus или Open Office, браузер
	доступа в электронно-	(Firefox, Google Chrome);
	образовательную среду МИЭТ)	Acrobat reader DC
		Visual Studio
Компьютерный	Компьютерная техника	Операционная
класс	(системный блок Intel Core i5,	система Microsoft Windows от 7
	монитор ТГТ 21,5" AOC	версии и
	i2269Vw). Доступ к сети	выше, Microsoft Office Professional
	«Интернет» и ресурсам	Plus или Open Office, браузер
	ОРИОКС	(Firefox, Google Chrome);
		Acrobat reader DC
		Visual Studio
Помещение для	Компьютерная техника с	Операционная
самостоятельной	возможностью подключения к	система Microsoft Windows от 7
работы	сети «Интернет» и	версии и

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
обучающихся	обеспечением доступа в электронную информационно-образовательную среду МИЭТ	выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Chrome); Acrobat reader DC, Visual Studio

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ПК-1.КЗ «Способен к реализации и применению методов обработки и анализа цифровых изображений к решению комплексных задач в области компьютерного зрения»

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ дисциплины

11.1. Особенности организации процесса обучения

Практические и лабораторные занятия проводятся контактно в соответствии с расписанием. Посещение занятий обязательно.

Важно значение придается соблюдению сроков сдачи контрольных мероприятий. Задержка в сдаче приводит к уменьшению числа баллов, начисляемых за выполнение, вплоть до их потери.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система.

Баллами оцениваются: выполнение каждой лабораторной работой в семестре (в сумме до 50 баллов), активность в семестре (в сумме до 20 баллов) и сдача зачетной работы (до 30 баллов). По сумме баллов выставляется итоговая оценка по предмету.

Структура и график контрольных мероприятий доступен в OPИОКС// URL: http://orioks.miet.ru/.

РАЗРАБОТЧИКИ:

Профессор кафедры ВМ-1 /Умняшкин С.В./
Ассистент кафедры ВМ-1 / Воложит П.В./

Рабочая программа дисциплины «Компьютерное зрение» по направлению подготовки 02.04.01 «Математика и компьютерные науки», направленность (профиль) «Компьютерные методы моделирования, обработки и анализа данных», разработана на кафедре ВМ-1 и утверждена на заседании УС кафедры 25.04 2023 года, протокол № 14

Заведующий кафедрой ВМ-1 А.А. Прокофьев

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК ______/И.М.Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки Му /Т.П.Филиппова