Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александрувичистерство науки и высшего образования Российской Федерации

Должность: Ректор МИЭТ Обедеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 04.09.2023 11:05:09

Уникальный программный ключ: «Национальный исследовательский университет

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f73**6MQсковский**ж**нст**и**ту**т электронной техники»

УТВЕРЖДАЮ

Проректор по учебиой работе

И.Г. Игнатова

d » correspo 2020 r

М.П.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Проектирование сенсорных систем»

Направление подготовки - 28.04.03 «Наноматериалы» Направленность (профиль) — «Инженерия наноматериалов для сенсорики»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

	Подкомпетенции,		
Компетенции	формируемые в	Индикаторы достижения	
	дисциплине	компетенций	
ОПК-1 Способен	ОПК-1.ПСС Способен	Знание основных тенденции	
ставить и решать	ставить и решать	развития технологии	
инженерные и	инженерные и научно-	наноматериалов, а также их	
научно-технические	технические задачи в	использования при проектировании	
задачи в области	области получения и	элементов сенсорных систем	
получения и	исследования	Умение формулировать задачи для	
исследования	наноматериалов для	достижения поставленных целей по	
наноматериалов и	сенсорики	заданной тематике	
НОВЫХ	Сепсорики	Практический опыт	
междисциплинарны		использования научного	
х направлений с		инструментария физики твердого	
использованием		тела для описания, анализа,	
естественнонаучных		теоретического и	
и математических		экспериментального исследования	
моделей		и моделирования процессов синтеза	
		и исследования наноматериалов	
ОПК-4 Способен	ОПК-4.ПСС Способен на	Знание основных этапов	
выполнять	основе критического	проведения научного исследования,	
исследования при	анализа полученных	а также основных принципов	
решении	ранее результатов ставить	построения презентационного	
инженерных и	задачи и планировать	материала	
научно-технических	эксперименты при	Умение логично и лаконично	
задач, включая	проектировании	представить имеющийся материал в	
планирование и	сенсорных систем и	указанные временные интервалы, а	
постановку	элементов	также анализировать	
сложного		информационные ресурсы,	
эксперимента,		соотносить полученные результаты	
критическую оценку		с материально-техническими	
и интерпретацию		возможностями и формулировать	
результатов		необходимые процедуры по	
		достижению требуемых	
		результатов	
		Опыт деятельности по	
		составлению плана научно-	
		исследовательской деятельности,	
		включая литературный поиск,	
		сроки и последовательность	
		экспериментальной работы,	
		обсуждения и анализа результатов,	
		а также по формированию	
		демонстрационного материала и	

Компетенции	Подкомпетенции, формируемые в дисциплине	Индикаторы достижения компетенций		
		представления результатов своей исследовательской деятельности на научных конференциях, во время промежуточных и итоговых аттестаций		

Компетенция ПК-2 «Способен обеспечивать функционирование производства изделий сенсорики» **сформулирована на основе профессионального стандарта 40.005** «Специалист в области материаловедческого обеспечения технологического цикла производства объемных нанометаллов, сплавов, композитов на их основе и изделий из них»

Обобщенная трудовая функция - В [7] Менеджмент ресурсов

Трудовые функции - 40.005 В/01.7 Рациональное расходование материалов, используемых при проведении операций контроля, измерения свойств и испытания основных, вспомогательных и расходных материалов и **40.005 В/02.7** Рациональное расходование основных, вспомогательных и расходных материалов, используемых при их разработке и выборе

Подкомпетенции, формируемые в дисциплине	Задачи профессиональной деятельности	Индикаторы достижения подкомпетенций
ПК-2.ПСС Способен обеспечить оптимальный расход материально- технических средств прим разработке сенсорных систем и технологий их производства	- Сбор и сравнительный анализ данных о существующих типах и марках материалов, их структуре и свойствах, способах разработки новых материалов с заданными технологическими и функциональными свойствами применительно к решению поставленных задач с использованием баз данных и литературных источников; - Участие в организации и проведении проектов, исследований и разработок новых материалов и композиций, научных и прикладных экспериментов по созданию новых процессов получения и обработки материалов, а также изделий; - Подготовка научно-технических отчетов, обзоров, публикаций по результатам выполненных исследований на основе анализа и	Знание основных понятий исследовательских / производственных материалов, основных методов исследования наноматериалов, а также возможностей лабораторий института Умение анализировать необходимость применения вспомогательных материалов, а также рассчитывать объемы основных материалов, а также рассчитывать объемы основных материалов, соотносить характеристики исследовательского оборудования с параметрами наноматериалов и структур на их основе, которые необходимо исследовать Опыт деятельности по выбору и рациональному расходу основных и вспомогательных материалов при разработке и планировании производства изделий сенсорики
	систематизации научно-	поделии сенсориии

технической патентной информации по теме исследования, а также отзывов и заключений на проекты, в т.ч. стандартов; – Анализ, обоснование выполнение технических проектов в части рационального выбора материалов В соответствии заданными **УСЛОВИЯМИ** при конструировании изделий, технологических проектировании процессов производства, обработки переработки материалов, нетиповых средств для испытаний полуфабрикатов материалов, изделий

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть Блока 1 «Дисциплины (модули)» образовательной программы, изучается на 2 курсе в 4 семестре (очная форма обучения).

Входные требования к дисциплине: изучению дисциплины предшествует формирование компетенций в дисциплинах образовательной программы магистратуры 1-3 семестров.

Формируемые в процессе изучения дисциплины компетенции в дальнейшем углубляются выполнением индивидуального задания практики и служат основой для выполнения выпускной квалификационной работы (ВКР).

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		сть	сть	Кон рабо	тактна)та	Я		0В0Й	
Курс	Семестр	Общая трудоёмко (3E)	Общая трудоёмко (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	В том числе - Практическая подготовка при выполнении курсоработы (проекта)	Промежуточная аттестация
2	4	12	432	-	-	32	400	400	ЗаО, КП

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Контактная работа			В	19	
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	В том числе - Практическая подготовка при выполнении курсовой работы (проекта)	Формы текущего контроля
Проектирование сенсорных систем, устройств, элементов	-	-	32	400	400	Сдача курсового проекта

4.1. Лекционные занятия

Не предусмотрены

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий (часы)	Наименование занятия
	1		Вводное занятие: постановка задач дисциплины, разъяснение
	1	2	регламента выполнения курсового проекта, составление перечня возможного к использованию оборудования института и партнеров
	2-3	4	Публичное представление заданий на КП, сформулированных по итогам производственной практики 3 семестра обучения. Представление поэтапного графика выполнения работ с запланированными результатами (технического задания) Представление карты материально-технического обеспечения курсового проекта
1	4	2	Анализ необходимых производственных мощностей в смежных лабораториях, методов исследования.
	5-6	4	Утверждение скорректированных ТЗ на курсовой проект
	7-8	4	Промежуточный отчет о выполнении проекта
	9 2		Анализ загруженности лабораторий, соблюдения графика работ, корректировка графика работ в смежных лабораториях и исследовательских центрах
			Промежуточный отчет о выполнении проекта
	12-14	6	Публичная защита курсовых проектов и представление технического задания на преддипломную практику
	15-16	4	Итоговое занятие: предоставление отчетов, корректировка технических заданий

4.3. Лабораторные работы

Не предусмотрены

4.4. Самостоятельная работа студентов

№ модуля дисциплины	Объем занятий (часы)	Вид СРС
	Практ	гическая подготовка при выполнении курсовой работы (проекта), в
	том ч	исле:
	100	Выполнение теоретических исследований, анализа
1	120	Выполнение практической части проекта
120 Анализ полученных данных		Анализ полученных данных
	25	Подготовка к публичной защите проекта
	25 Подготовка технического задания на преддипломную практику	
	10	Подготовка отчета

4.5. Примерная тематика курсовых работ (проектов)

Тематики курсовых проектов определяются по итогам выполнения заданий по производственной практике в соответствии с общей направленностью программы подготовки:

- Технологии создания сенсорных элементов;
- Технологии создания материалов для сенсорных структур;
- Разработка сенсорных систем и т.д.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС// URL: http://orioks.miet.ru/):

Модуль 1 «Проектирование сенсорных систем, устройств, элементов»

- ✓ Для выполнения теоретической части проекта используются все возможные источники информации, включая международные и российские патентные базы, журналы, литература по технологии, конструкции и материалах сенсорных систем, приборов, элементов. Оформление материалов осуществляется в соответствии с ГОСТ 7.23-2017
- ✓ Для выполнения практической части проекта используются производственные, лабораторные, исследовательские мощности института ПМТ и МИЭТ в целом. Для осуществления взаимодействия между смежными лабораториями, а также для осуществления требуемых задач за пределами института ПМТ, проводится анализ требуемых исследований, оборудования, ответственные от института, а также руководители обучающихся осуществляют первичное взаимодействие с требуемыми

✓ При выполнении подготовки к выполнению практической части, анализа полученных данных, составлении отчета предполагается использование всего доступного программного обеспечения, имеющегося у МИЭТ (лицензионного или в открытом доступе).

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Киреев В.Ю. Нанотехнологии в микроэлектронике. Нанолитография процессы и оборудование: [учебно-справочное руководство] / В.Ю. Киреев. Долгопрудный: Интеллект, 2016. 320 с.
- 2. Нанотехнологии в электронике. Вып. 3 / Под ред. Ю.А. Чаплыгина. М.: Техносфера, 2015. 480 с.
- 3. Applications of Nanomaterials in Sensors and Diagnostics / Adisorn Tuantranont, ed. Springer, 2013. (. Volume 14. Springer Series on Chemical Sensors and Biosensors). URL: http://link.springer.com/book/10.1007/978-3-642-36025-1 (дата обращения: 27.09.2020).
- 4. Optical Nano- and Microsystems for Bioanalytics / Wolfgang Fritzsche, Jurgen Popp, editors. Springer, 2012. (Springer Series on Chemical Sensors and Biosensors. Volume 10). Режим доступа: http://link.springer.com/book/10.1007%2F978-3-642-25498-7 (дата обращения: 12.08.2020).
- 5. Штерн Ю.И. Термометрия: Учеб. пособие / Ю.И. Штерн, А.А. Шерченков, Р.Е. Миронов; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2013. 256 с.
- 6. Введение в процессы интегральных микро- и нанотехнологий: В 2-х т.: [Учеб. пособие для вузов]. Т. 2: Технологические аспекты / М.В. Акуленок [и др.]; Под общ. ред. Ю.Н. Коркишко. М.: БИНОМ. Лаборатория знаний, 2011. 256 с.
- 7. Введение в процессы интегральных микро- и нанотехнологий: В 2-х т.: [Учеб. пособие для вузов]. Т. 1: Физико-химические основы технологии микроэлектроники / Ю.Д. Чистяков, Ю.П. Райнова; Под общ. ред. Ю.Н. Коркишко. М.: БИНОМ. Лаборатория знаний, 2010. 392 с.
- 8. Пул Ч. Нанотехнологии: Учеб. пособие / Ч. Пул, Ф. Оуэнс; Пер. с англ. под ред. Ю.И. Головина. 4-е изд., испр. и доп. М.: Техносфера, 2009. 336 с.
- 9. Шерченков А.А. Физика и технология полупроводниковых преобразователей энергии: Учеб. пособие. Ч. 1 / А.А. Шерченков, Ю.И. Штерн. М.: МИЭТ, 2006. 164 с. ISBN 5-7256-0441-0
- 10. Гаврилов С.А. Учебное пособие по дисциплине "Физика и химия поверхности" / С.А. Гаврилов, Д.Г. Громов; М-во образования и науки РФ, МГИЭТ(ТУ). М.: МИЭТ, 2011. 104 с.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Лань: электронно-библиотечная система. Санкт-Петербург, 2011. URL: https://e.lanbook.com/ (дата обращения: 21.09.2020). Режим доступа: для авториз. пользователей МИЭТ.
- 2. eLIBRARY.RU: научная электронная библиотека: сайт. Москва, 2000. URL: https://elibrary.ru (дата обращения: 11.09.2020). Режим доступа: для зарегистрир. пользователей.
- 3. Юрайт: Электронно-библиотечная система: образовательная платформа. Москва, 2013. URL: https://urait.ru/ (дата обращения: 05.09.2020). Режим доступа: для авторизированных пользователей МИЭТ.
- 4. База American Chemical Society (ACS) : [сайт]. URL: http://pubs.acs.org (дата обращения: 20.09.2020). Режим доступа: для авториз. пользователей МИЭТ.
- 5. Electrochemical Society : [сайт]. URL: http://ecsdl.org/ (дата обращения: 20.09.2020). Режим доступа: для авториз. пользователей МИЭТ.
- 6. SCOPUS: библиографическая и реферативная база данных научной периодики: сайт. URL: www.scopus.com/ (дата обращения: 20.09.2020). режим доступа: для авториз. пользователей МИЭТ.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе реализации обучения используется смешанное обучение (реализовывается с применением электронного обучения и дистанционных образовательных технологий).

Освоение образовательной программы обеспечивается ресурсами электронной информационно-образовательной среды ОРИОКС (http://orioks.miet.ru).

Для взаимодействия студентов с преподавателем используются сервисы обратной связи: раздел ОРИОКС «Домашние задания», электронная почта, чат с преподавателем в WhatsApp.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория № 4136 «Лаборатория микроскопии»	Проектор Epson EB-G5600, мультимедийный комплекс, компьютеры, принтеры, интернет	Windows 7 Enterprise, Microsoft Office

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория № 43096 «Лабораторный практикум по тонкопленочной технологии»	 вакуумная установка термического испарения УРМ-3279011; вакуумная установка магнетронного напыления УВМ-026; вакуумная установка ионноплазменного нанесения УРМ-3279014 	Не требуется
Учебная аудитория № 4349 «Лабораторный практикум по функциональной электронике»	 малогабаритная вакуумная установка термического испарения МВУ ТМ ТИС; малогабаритная вакуумная установка магнетронного напыления МВУ ТМ Магна; малогабаритная вакуумная установка реактивно-ионного травления МВУ ТМ РИТ; установка осаждения нитевидных нанокристаллов и углеродных нанотрубок, FirstNano Inc. USA; измерительное оборудование: вольтметры, омметры, генераторы сигналов 	Не требуется
Учебная аудитория № 4315 «Лаборатория технологии наноматериалов»	- компьютер с ПО и возможностью подключения к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду МИЭТ; - автоматизированный комплекс нанесения материалов атомно-слоевым осаждением KSV Dip Coater; - потенциостат-гальваностат AUTOLAB PGSTAT302; - электрохимический комплекс НАНО-XT-1 на элементе Пельтье; - комплект оборудования для электрохимического формирования наноматериалов AMMT GmbH Germany; - весы OXAUS Model PA 214 C; - симулятор солнечного излучения NEWPORT 67005 с источником тока NEWPORT 69907; - источник тока KEITHLEY 2450; - потенциостат-гальваностат Elins P-	Microsoft Windows, Visual C++, CorelDRAW, Kaspersky Total Securi, Microsoft Office

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
	45X; – термостат жидкостной Lauda model Alpha	
Помещение для самостоятельной работы	Помещение, оснащенное компьютерной техникой, с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду МИЭТ	OC Microsoft Windows Microsoft Office Professional Plus браузер Acrobat reader DC

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

- 1. ФОС по подкомпетенции ОПК-1. ПСС «Способен ставить и решать инженерные и научно-технические задачи в области получения и исследования наноматериалов для сенсорики»
- 2. ФОС по подкомпетенции ОПК-4. ПСС «Способен на основе критического анализа полученных ранее результатов ставить задачи и планировать эксперименты при проектировании сенсорных систем и элементов»
- 3. ФОС по подкомпетенции ПК-2. ПСС «Способен обеспечить оптимальный расход материально-технических средств при разработке сенсорных систем и технологий их производства»

Фонды оценочных средств представлены отдельными документами и размещены в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Основной составляющей данной дисциплины является курсовой проект, который становится последней частью выпускной квалификационной работы.

Курсовой проект обязательно должен содержать в себе теоретическую, практическую и аналитическую части.

Для систематизации выполнения проекта по итогам производственной практики 3 семестра составляется техническое задание, которое после публичного представления на первом занятии при необходимости корректируется.

Для выполнения практической части составляется карта материально-технического обеспечения проекта, которая обсуждается с руководителем и в группе, для обеспечения максимально оптимизации нагрузки оборудования института и лабораторий и центров

университета. Составляется график выполнения работ в смежных лабораториях института, а также в исследовательских центрах или лабораториях других подразделений университета. Соблюдение графика и загруженность оборудования контролируется ответственным от института.

Каждую вторую неделю семестра происходит обсуждение полученных результатов в группе, в присутствии руководителей ВКР, сотрудников лабораторий и института. При необходимости идет корректировка графика выполнения работ в лабораториях или содержание этапов выполнения проекта.

На 8 неделе происходит публичная защита проектов в присутствии комиссии, руководителей проектов. По итогам полученных результатов и комментариев, и замечаний, полученных в ходе публичных слушаний, обучающийся составляет отчет по курсовому проекту, который сдает ответственному. Отчет должен быть оформлен в соответствии с требованиями ГОСТ 7.32-2017.

11.2. Система контроля и оценивания

По завершению изучения дисциплины предусмотрен зачет с оценкой, при этом оценка итогов учебной деятельности студента основана на накопительно — балльной системе. Для сдачи зачета с оценкой по дисциплине разработаны ФОСы, включающие комплексное практико-ориентированное задание по проверке сформированности подкомпетенций с методическими указаниями по их выполнению и критериями оценки.

По сумме баллов выставляется итоговая оценка по предмету. Структура и график контрольных мероприятий доступен в ОРИОКС// URL: http://orioks.miet.ru/.

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка
Менее 50	2
50 – 69	3
70 – 85	4
86 – 100	5

РАЗРАБОТЧИК:		
	Micecel	
Доцент института ПМТ, к.т.н., доцент	agmin /	/А.В. Железнякова /

Рабочая программа дисциплины «Проектирование сенсорных систем» по направлению подготовки 28.04.03 «Наноматериалы», направленности (профилю) «Инженерия наноматериалов для сенсорики» разработана в Институте перспективных материалов и технологий и утверждена на заседании УС ИПМТ 30 сентября 2020 года, протокол № 39

Директор Института ПМТ

/ С.А. Гаврилов/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая	программа	согласована	c	Центром	подготовки	К	аккредитации	И	независимой
оценки качества									

Начальник АНОК

_____/ И.М. Никулина /

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

Мер / Т.П. Филиппова /