Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александ Министерство науки и высшег ф образования Российской Федерации

Должность: Ректор Федеральное государственное автономное образовательное учреждение высшего образования Дата подписания: 01.09.2023 16:25:22 «Натиональный исследовательский университет

«Национальный исследовательский университет

Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f736076C8180ea8822B80607итут электронной техники»

УТВЕРЖДАЮ

Проректор по учебной работе,

д.т.н., профессор

И.Г. Игнатова

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Приборы и методы контроля состава крови»

Направление подготовки 12.04.04 «Биотехнические системы и технологии» Направленность (профиль) «Персонализированные, носимые и имплантируемые биомедицинские системы»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

ПК-1 «Способен анализировать состояние научно-технической проблемы, ставить цель и задачи для проектирования биотехнических систем и медицинских изделий на основе подбора и изучения литературных и патентных источников» **сформулирована на основе профессионального стандарта 26.014** «Специалист в области разработки, сопровождения и интеграции технологических процессов и производств в области биотехнических систем и технологий»

Обобщенная трудовая функция В. Разработка и интеграция инновационных биотехнических систем и технологий, в том числе медицинского, экологического и биометрического назначения

Трудовая функция В/01.7 Научные исследования в области создания инновационных биотехнических систем и технологий

Подкомпетенции,	Задачи	W		
формируемые в	профессиональной	Индикаторы достижения		
дисциплине	деятельности	подкомпетенций		
ПК-1.ПМКСК	1. Анализ научно-	Знания:		
Способен	технической	– основных целей и задач		
анализировать	информации по	проектирования систем контроля		
состояние научно-	разработке	состава крови;		
технической	биотехнических систем	принципов построения систем		
проблемы, ставить	и технологий,	контроля состава крови.		
цель и задачи для	медицинских изделий.	Умения:		
проектирования	2. Экспериментальные	– постановки целей и задач		
систем контроля	исследования для	проектирования инновационных		
состава крови на	создания	систем контроля состава крови;		
основе подбора и	инновационных	– подбора и анализа научно-		
изучения	биотехнических систем	технической информации в области		
литературных и	и технологий,	систем контроля состава крови.		
патентных	медицинских изделий,	Опыт деятельности:		
источников.	интеграции	- самостоятельного подбор и анализа		
	биотехнических систем	литературных источников в области		
		технических систем контроля состава		
		крови.		
		проведения патентных		
		исследований в области технических		
		систем контроля состава крови.		

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине - для изучения дисциплины необходимо:

- знать основы анатомии и физиологии человека, биологические и физические принципы организации биосистем, принципов описания физических процессов, происходящих в биологических системах, основы геометрической и физической оптики, основы органической химии, устройство и принципы функционирования биомедицинских оптических систем;
- уметь применять базовые физические законы для описания процессов в биологических и биотехнических системах, применять инструменты высшей математики для описания физических процессов в средах, анализировать и рассчитывать электрические цепи, применять численные методы для решения уравнений, читать и анализировать научную литературу на иностранном языке.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		ость	эсть	Конта	стная раб	ота		
Курс	Семестр	Общая трудоёмк (ЗЕ)	Общая трудоёмкость (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
2	3	4	144	16	-	32	60	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	ктная ра	бота	8	
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля
1. Разрушающие методы контроля состава крови	2	-	6	10	Контрольная работа
2. Спектральные методы контроля состава крови	2	-	6	10	Nº 1

	Конта	ктная ра	бота	K	
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля
3. Неспектральные методы	4	_	4	10	
контроля состава крови	•		•	10	Контрольная работа
4. Проектирование оптических систем контроля состава крови	2	-	6	10	№ 2
5. Математические принципы проектирования спектроскопических систем контроля состава крови	2	-	6	10	Контрольная работа № 3
6. Системы инсулинотерапии	4	-	4	10	

4.1. Лекционные занятия

— № модуля дисциплины	№ практического занятия	Объем занятий (часы)	Краткое содержание
1	1	2	Кровь. Функции. Реологические особенности. Плазма крови.
			Химический состав крови.
2	2	2	Неразрушающий контроль. Методы. Классы устройств. Применение.
			Анализ применимости.
	3	2	Неспектральные оптические методы неразрушающего контроля.
3			Классы, устройства, применимость.
3	4	2	Электрический импенданс. Импедансометрия. Импедансные
			приборы и методы контроля состава крови.
	5	2	Геометрическая оптика в системах контроля состава крови.
4			Активные и пассивные оптические элементы. Аберрации Зейделя.
			Расчет аберраций.
5	6	2	Элементы теории нечетких множеств. Идентификация нечеткого
3			множества. Линеаризация нечеткого множества.
	7	2	Инсулинотерапия. Инсулиновый насос. Технические требования.
6			Принципы построения.
6	8	2	Замкнутые системы контроля. Обратная связь. Автоматизированные
			и автоматические системы. Искусственная поджелудочная железа.

4.2. Практические занятия

		_	,			ч.2. практи теские запитни
№ модуля	дисциплины	•	занятия	Объем занятий	(часы)	Краткое содержание
		1		2		Медицинские аспекты контроля состава крови. Связь химического
						состава крови с нарушениями функционирования организма.
1		2		2		Разрушающий контроль. Инвазивность. Методы. Риски применения.
		3		2		Методы лабораторного исследования состава крови. Общий и биохимический анализ крови. Химические и электрохимические методы. Инструментальные методы.
		4		2		Трансмиссионная спектроскопия. Оптические свойства биологической ткани. Закон Бугера-Ламберта-Бэра. Закон Бэра. Классы спектрометров и принципы работы.
2		5		2		Рефлексионная спектроскопия. Закон ламберта. Уравнение переноса излучения. Уравнения Кубелки-Мунка. Диффузионное приближение.
		6		2		Рамановская спектроскопия. Комбинационное рассеяние. Контрольная работа № 1.
		7		2		Прочие методы контроля состава крови.
3		8		2		Приборы контроля химического состава крови. Измерители глюкозы, гемоглобина, гематокрита.
		9		2		Актуальные вопросы разработки гематологических измерительных систем
4		10		2		Методы оценки погрешностей измерителей. Классические методы оценки погрешности средства измерения. Клинические методы. Шкала Паркс. Шкала Кларка
		11		2		Разработка фотометрической системы. Технические требования. Оптические элементы. Контрольная работа № 2
		12		2		Расчет КГК при фотометрическом подходе. Математическая модель и решение.
5		13		2		Расчет КГК при спектроскопическом подходе. Математическая модель и решение.
		14		2		Оценка эффективности методов методами теории эффективности. Функция эффективности. Критерии эффективности.
6		15		2		Прогнозирование КГК. Управление на основе прогнозирующих моделей. Математическая модель объекта управления. Проблемы
6						применения численных методов для решения задачи прогнозирования. Метод Рунге-Кутты. Метод Дормана-Принса. Взрыв погрешности.

16	2	Эксперимента	альная	оценка	эффе	ективности.	Формирование
		программы и	и методи	ки испы	таний.	Физическое	моделирование.
		Контрольная	работа №	3			

4.3. Лабораторные работы

Не предусмотрены.

4.4. Самостоятельная работа студентов

	1	
№ модуля дисциплины	Объем занятий (часы)	Вид СРС
1	10	Усвоение теоретического материала, изложенного на лекциях. Работа с
		учебной, учебно-методической и специальной научно-технической
		литературой, онлайн-ресурсами Подготовка к практическим занятиям.
		Поиск и анализ патентов в области способов контроля состава крови на
		основе разрушающих методов.
2	10	Усвоение теоретического материала, изложенного на лекциях. Работа с
		учебной, учебно-методической и специальной научно-технической
		литературой, онлайн-ресурсами Подготовка к практическим занятиям.
		Поиск и анализ патентов в области способов контроля состава крови на
		основе спектральных методов.
3	10	Усвоение теоретического материала, изложенного на лекциях. Работа с
		учебной, учебно-методической и специальной научно-технической
		литературой, онлайн-ресурсами Подготовка к практическим занятиям.
		Поиск и анализ патентов в области способов контроля состава крови на
		основе неспектральных неразрушающих методов.
4	10	Усвоение теоретического материала, изложенного на лекциях. Работа с
		учебной, учебно-методической и специальной научно-технической
		литературой, онлайн-ресурсами Подготовка к практическим занятиям.
		Поиск и анализ патентов в области оптических устройств для контроля
_	10	состава крови.
5	10	Усвоение теоретического материала, изложенного на лекциях. Работа с
		учебной, учебно-методической и специальной научно-технической
		литературой, онлайн-ресурсами Подготовка к практическим занятиям.
		Поиск и анализ патентов в области устройств и способов контроля
		состава крови в части математического аппарата для определения
6	10	целевых показателей.
6	10	Усвоение теоретического материала, изложенного на лекциях. Работа с
		учебной, учебно-методической и специальной научно-технической
		литературой, онлайн-ресурсами Подготовка к практическим занятиям.
		Поиск и анализ патентов в области устройств для инсулинотерапии.

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

- 1) конспекты лекций;
- 2) примеры заданий к практическим занятиям;
- 3) примеры заданий к контрольным работам;
- 4) список вопросов к экзамену;
- 5) методические рекомендации для студентов.

Модуль 1. «Разрушающие методы контроля состава крови»

Для подготовки к практическим и контрольным мероприятиям по модулю – литература Л.6 (с. 13-16, 104-137).

Модуль 2. «Спектральные методы контроля состава крови»

Для подготовки к практическим и контрольным мероприятиям по модулю – литература Л.3 (с. 5-20), Л.4 (с. 588-616).

Модуль 3. «Неспектральные методы контроля состава крови»

Для подготовки к практическим и контрольным мероприятиям по модулю – литература Л.7 (с. 247-289).

Модуль 4. «Проектирование оптических систем контроля состава крови»

Для подготовки к практическим и контрольным мероприятиям по модулю – литература Л.3 (с. 34-42, 66-71), Л.4 (с. 421-476).

Модуль 5. «Математические принципы проектирования спектроскопических систем контроля состава крови»

Для подготовки к практическим и контрольным мероприятиям по модулю – литература Л.2 (с. 5–21), Л.3 (с. 25-28), Л.4 (с. 413-420), Л.7 (с. 67-82).

Модуль 6. «Системы инсулинотерапии»

Для подготовки к практическим и контрольным мероприятиям по модулю – литература Л.1 (с. 45-53), Л.5 (с. 7-15).

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1.Базаев Н.А. Сборник задач по дисциплине "Биофизические основы живых систем" : Учеб. пособие / Н.А. Базаев, К.В. Пожар; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М. : МИЭТ, 2018. 80 с. ISBN 978-5-7256-0891-5.
- 2. Терещенко С.А. Фотометрия рассеивающих сред : Учеб. пособие / С.А. Терещенко; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М. : МИЭТ, 2016. 120 с. ISBN 978-5-7256-0836-6.

- 3. Биомедицинские оптические системы: Учеб. пособие / А.Ю. Герасименко [и др.]; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2016. 84 с. ISBN 978-5-7256-0838-0.
- 4. Ландау Л.Д. Теоретическая физика: Учеб. пособие для вузов: В 10-ти т. Т. 8: Электродинамика сплошных сред / Л.Д. Ландау, Е.М. Лифшиц. 4-е изд., стер. М.: Физматлит, 2005. 656 с. ISBN 5-9221-0123-4. URL: https://e.lanbook.com/book/2234 (дата обращения: 14.09.2020). Текст: электронный.
- 5.Введение в лазерную спектроскопию медико-биологических объектов 2-е изд., стер. : Учеб. пособие / Б.Г. Агеев [и др.]. Томск: СибГМУ, 2017. 62 с. URL: https://e.lanbook.com/book/113518. (дата обращения: 14.09.2020). Текст : электронный.
- 6. Лелевич, С. В. Клиническая лабораторная диагностика: учебное пособие / С. В. Лелевич, В. В. Воробьев, Т. Н. Гриневич. 4-е изд., стер. Санкт-Петербург: Лань, 2020. 168 с. ISBN 978-5-8114-5502-7. URL: https://e.lanbook.com/book/142239 (дата обращения: 14.09.2020). Текст: электронный.

Периодические издания

- 1.МЕДИЦИНСКАЯ ТЕХНИКА: Научно-технический журнал / Союз общественных объединений "Международное научно-техническое общество приборостроителей и метрологов" (СОО МНТО ПМ); Гл. ред. С.В. Селищев. М.: Медицина, 1967 .
- 2.БИОМЕДИЦИНСКАЯ РАДИОЭЛЕКТРОНИКА: Международный научноприкладной журнал / Издательство "Радиотехника". - М.: Радиотехника, 1998 - .

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1.eLIBRARY.RU : научная электронная библиотека : сайт. Москва, 2000. URL: http://www.elibrary.ru/ (дата обращения: 14.09.2020). Режим доступа: для зарегистрир. пользователей.
- 2. Scopus: экспертно кураторская база данных рефератов и цитат: сайт. Elsevier, 2020. URL: http://www.scopus.com (дата обращения: 14.09.2020). Режим доступа: для зарегистрир. пользователей.
- 3. Web of Science: поисковая интернет-платформа: сайт. Clarivate, 2016. URL: https://clarivate.com/products/web-of-science/ (дата обращения: 14.09.2020). Режим доступа: для зарегистрир. пользователей.
- 4. Роспатент. Федеральная служба по интеллектуальной собственности: Официальный Интернет-сайт Роспатент / Федеральная служба по интеллектуальной собственности (Роспатент) М.: Роспатент, 2012. Информационные ресурсы Роспатента; URL: https://rupto.ru/ru/sourses (дата обращения: 14.09.2020).

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Для взаимодействия преподавателей и студентов используются модули «Новости» и «Обратная связь» электронной информационно-образовательной среды ОРИОКС, а также электронная почта.

Применяются следующие модели обучения: перевернутый класс, для подготовки к которому студенту необходимо осуществлять самостоятельный поиск и изучение информации с использование предлагаемых преподавателем онлайн-ресурсов.

При проведении занятий и для самостоятельной работы используются **внутренние электронные ресурсы** в форме примеров заданий к контрольным работам и других методических материалов в информационной образовательной среде OPИOКС// URL: http://orioks.miet.ru/.

При необходимости дисциплина может быть реализована частично или полностью с применением дистанционных образовательных технологий. Лекционные и практические занятия, а также назначенные при необходимости консультации проходят с использованием внутренней электронной системы Moodle и интернет-сервиса голосового чата Discord. Промежуточная аттестация проводится с использованием интернет-сервиса голосового чата Discord.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное оборудование	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Chrome); Acrobat reader DC
Помещение для самостоятельной работы	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МИЭТ	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Chrome); Acrobat reader DC

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ПК-1.ПМКСК «Способен анализировать состояние научно-технической проблемы, ставить цель и задачи для проектирования систем контроля состава крови на основе подбора и изучения литературных и патентных источников».

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Посещение лекций и практических занятий обязательно.

Лекционный курс организован в смешанной форме. В ходе части лекционных занятий, реализуемых в пассивной форме, студенты выступают в роли обучаемых, овладевающих учебным материалом, либо воспроизводят его вслед за преподавателем. В рамках ряда лекционных занятий используется модель смешанного обучения «перевернутый класс». Данная модель применяется тогда, когда основные элементы той или иной изучаемой темы доступны для самостоятельного ознакомления и анализа, в частности на лекционных занятиях № 2, 3, 6, 7. В конце предшествующего подобному лекционного занятия студентам анонсируется тема следующего занятия, описывается место этой темы в программе дисциплины и ее актуальность, после чего предлагается самостоятельно ознакомиться с известными офлайн- и онлайн-ресурсами, а также произвести самостоятельный поиск информации по предлагаемой теме. Перечисляются ключевые элементы темы, на которые следует обратить внимание. На аудиторном занятии, посвященном указанной теме, происходит обмен знаниями между студентами, а также дополнение и корректировка оглашаемой информации преподавателем.

Задача студента в рамках подготовки к подобному занятию: найти, систематизировать информацию по теме, зафиксировать тезисы, выделить информацию, которую не удалось понять самостоятельно. Задача студента в рамках аудиторного занятия: огласить тезисы, прокомментировать их при наличии вопросов других студентов или преподавателя, задать вопросы к тезисам других студентов, задать вопросы преподавателю по наиболее сложным элементам темы. Функции преподавателя: задавать наводящие вопросы, расставлять акценты, корректировать недостоверную информацию, дополнять информацию, оценивать активность студентов, модерировать обсуждение.

Практические занятия проводятся в активной и интерактивной формах. Часть занятий, связанных с получением навыков применения математического аппарата, предложенного на лекциях, заключаются в решении практических задач с использованием теоретического материала по пройденным темам. Задачи оглашаются преподавателем, решение осуществляется инициативными студентами у доски. Все присутствующие студенты участвуют в решении задачи, предлагая методы решения, отмечая ошибки в решении и задавая вопросы по решению. Преподаватель при необходимости корректирует процесс решения, разрешает спорные ситуации и поясняет верность выбора того или иного подхода к решению. Часть занятия проходит в форме дискуссий и мозгового штурма, в ходе которых преподаватель и студенты обсуждают актуальные проблемы решения практических задач по предложенным темам.

Самостоятельная работа студента представляет собой усвоение теоретического материала, полученного на лекциях, подготовку к лекциям, проводимым с применением методики «перевернутый класс», подготовку к практическим занятиям и контрольным мероприятиям, включая подбор и анализ литературных и патентных источников в области технических систем контроля состава крови. Поиск патентных источников осуществляется онлайн в открытых информационных ресурсах (elibrary.ru, Pocпатент, Google.Sholar, Google.Patents), а также в системах «Scopus» и «Web of Science» по

ключевым словам на русском и иностранном языках. Результаты информационного поиска и патентных исследований обсуждаются на практических занятиях.

Цель лекционных и практических занятий — обучение базовым знаниям и умениям. Освоение дисциплины на повышенном уровне в значительной степени осуществляется студентом самостоятельно. Лектор предоставляет студентам необходимые методические материалы.

Дополнительной формой контактной работы являются консультации. Консультации проводятся лектором по мере необходимости, их посещать необязательно.

11.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система. По сумме баллов выставляется итоговая оценка по дисциплине. Структура и график контрольных мероприятий доступен в OPИОКС// URL: http://orioks.miet.ru/. Мониторинг успеваемости студентов проводится в течение семестра трижды: по итогам 8, 12 и 16 учебной недели.

Текущий контроль проходит в форме аудиторных контрольных работ, проводимых по окончании каждых двух модулей. По материалу, пройденному в рамках модулей путем аудиторной и самостоятельной работы, формируются теоретические и практические задания, а также задачи, направленные на оценку опыта деятельности. Каждому заданию присваивается максимальный балл, задания делятся на варианты таким образом, чтобы суммарный максимальный балл за все задания у каждого варианта был равен баллу, предусмотренному графиком контрольных мероприятий. Ответ на задания оформляется письменно. Оценивается письменный ответ на задания.

При проверке теоретических заданий оценивается полнота и качество теоретических знаний. При проверке практических заданий оценивается полнота причинно-следственных связей, корректность математического описания объектов. При проверке задач оценивается оптимальность методики решения и сложность использованных подходов. По итогам проверки за каждое задание выставляется набранный балл. Итоговая оценка представляет собой сумму набранных баллов за все задания.

Промежуточная аттестация проходит в форме экзамена. Все вопросы, входящие в контрольные работы, вносятся в единый список вопросов, классифицируются на теоретические, практические и задачи и ранжируются по сложности. Каждому i-му вопросу присваивается максимальный балл S_i^m .

Из данного списка составляются билеты, каждый из которых включает 3 вопроса, суммарная сложность вопросов максимально уравнивается по всем билетам. На экзаменационном занятии студенту предлагается выбор билета вслепую, после чего дается 60 минут на подготовку ответа. Ответ на задания оформляется письменно и устно докладывается экзаменатору. Оценивается в первую очередь устный ответ на вопросы. Критерии оценки теоретических, практических заданий и задач аналогичны текущему контролю. По итогам проверки за каждое задание выставляется набранный балл.

Итоговый балл Z за экзамен рассчитывается следующим образом:

$$Z = S_{CS}^{m} \frac{a_1 + a_2 + a_3}{S_1^{m} + S_2^{m} + S_3^{m}},$$

где S^m_{CS} — максимальный балл за итоговое контрольное мероприятие согласно графику контрольных мероприятий, a_i — балл, набранный за і-й вопрос.

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Итоговая оценка	
Менее 50	2	
50 – 69	3	
70 – 85	4	
86 – 100	5	

РАЗРАБОТЧИК:

доцент Института БМС, к.т.н.

Рабочая программа дисциплины «Приборы и методы контроля состава крови» по направлению подготовки 12.04.04 «Биотехнические системы и технологии». направленности (профилю) «Персонализированные, носимые и имплантируемые биомедицинские системы» разработана в Институте БМС и утверждена на заседании УС Института БМС 16 СПКОМЯ 10 \mathbb{N} года, протокол \mathbb{N} (\mathbb{L} .

Зам. директора по образовательной деятельности Института БМС

/Д.А. Потапов/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа согласована с Центром подготовки к аккредитации и независимой оценки качества

Начальник АНОК

/И.М. Никулина/

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

Леуд / Т.П. Филиппова/