Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Беспалов Владимир Александ Министерство науки и высшег ф образования Российской Федерации

Должность: Ректорфидральное государственное автономное образовательное учреждение высшего образования Дата подписания: 01.09.2023 16:25:21

"Национальный исследовательский университет

«Национальный исследовательский университет Уникальный программный ключ:

ef5a4fe6ed0ffdf3f1a49d6ad1b49464dc1bf7354f73% МОЗКОВСКИЙ МИСТИТУТ ЭЛЕКТРОННОЙ ТЕХНИКИ»

УТВЕРЖДАЮ

Проректор по учебной работе,

д.т.н., профессор

И.Г. Игнатова

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Лазерная инженерия биосовместимых материалов»

Направление подготовки 12.04.04 «Биотехнические системы и технологии» Направленность (профиль) «Персонализированные, носимые и имплантируемые биомедицинские системы»

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательных программ:

ПК–1 «Способен анализировать состояние научно-технической проблемы, ставить цель и задачи для проектирования биотехнических систем и медицинских изделий на основе подбора и изучения литературных и патентных источников» **сформулирована на основе профессионального стандарта 26.014** «Специалист в области разработки, сопровождения и интеграции технологических процессов и производств в области биотехнических систем и технологий».

Обобщенная трудовая функция В. Разработка и интеграция инновационных биотехнических систем и технологий, в том числе медицинского, экологического и биометрического назначения.

Трудовая функция В/01.7 Научные исследования в области создания инновационных биотехнических систем и технологий.

Подкомпетенции, формируемые в	Задачи профессиональной	Индикаторы достижения
дисциплине	деятельности	подкомпетенций
ПК-1.ЛИБМ	Анализ научно-	Знания:
Способен	технической	- методов использования лазерного
определять	информации по	излучения в биомедицинских
требования и	разработке	приложениях.
условия для	биотехнических	- влияния лазерного излучения на
создания	систем и технологий,	вещества и биологические ткани.
биосовместимых	медицинских	Умения:
материалов	изделий.	- определять режимы эксплуатации
лазерными		лазерных систем и условия
методами.		использования материалов.
		Опыт:
		- анализа научно-технической
		литературы о взаимодействия лазерного
		излучения с биосовместимыми
		материалами, в том числе,
		наноматериалами и биологическими
		тканями.
		- сравнения условий использования
		подходов для создания биосовместимых
		материалов лазерными методами.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)» образовательной программы.

Входные требования к дисциплине - знания/умения в области распространения электромагнитных волн видимого, инфракрасного и ультрафиолетового диапазонов в веществах.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

		СТЬ	СТБ		стная раб	ота		
Курс	Семестр	Общая трудоёмко (ЗЕ)	Общая трудоёмко (часы)	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа (часы)	Промежуточная аттестация
1	2	4	144	16	-	32	60	Экз (36)

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	Конта	актная ј	работа	Б			
№ и наименование модуля	Лекции (часы)	Лабораторные работы (часы)	Практические занятия (часы)	Самостоятельная работа	Формы текущего контроля		
1. Технологи создания трехмерных биосовместимых материалов	4	-	6	18	Контрольная работа		
2. Лазерные методы создания биосовместимых наноматериалов	4	-	10	18	N <u>º</u> 1		
3. Структурные и функциональные свойства биосовместимых наноматериалов	4	-	8	14	Контрольная работа №2		
4. Лазерное восстановление целостности биологических тканей.	4	-	8	10	Доклад		

4.1. Лекционные занятия

№ модуля дисциплины	№ лекции	Объем занятий (часы)	Краткое содержание
			3D принтинг биосовместимых материалов. Виды физических
	1	2	воздействий на материалы. Типы материалов для создания 3D
1		_	объектов. Экструзионный, капельный 3D принтинг.
			Элекроспиннинг.
	2	2	Создание имплантационных материалов методом 3D принтинга.
			Фронты развития биопринтинга.
			Взаимодействие лазерного излучения с веществами. Модификация
	3	2	структурных функциональных свойств материалов.
2			Стереолитография. Лазерное спекание.
	4	2	Лазерная полимеризация. Лазерное формирование нанокомпозитных материалов с биополимерами.
			Микро- и наноструктура нанокомпозитных материалов с
	5	2	биополимерами и углеродными нанотрубками. Электронная
3			микроскопия. Колебательная и электронная спектроскопия.
	6	2	Механические и электрофизические свойства нанокомпозитных
	Ü	2	материалов с биополимерами.
	7	2	Сравнительная оценка бесконтактных и контактных методов
	,		восстановления целостности биологических тканей.
4			Лазерные методы восстановления целостности биологических
	8	2	тканей. Контроль структурных, механических и функциональных
			характеристик лазерных соединений.

4.2. Практические занятия

№ модуля дисциплины	№ практического занятия	Объем занятий	Краткое содержание
	1	2	Расчет параметров при лазерной полимеризации.
	2	2	Материалы и наноматериалы для аддитивных технологий и 3D
1			принтинга.
	3	2	Анализ сильных и слабых сторон аддитивных технологий и 3D
	3		принтинга в медицине.
	4	2	Анализ схем и параметров лазерных систем для стереолитографии,
2	2 4		спекания и полимеризации.
<u> </u>	5	2	Изменение фазового состояния среды при фотоинициации.
	6	2	Расчет параметров при лазерной полимеризации.

			Контрольная работа №1.
	7	2	Фотополимеризующиеся композиции для 3D принтинга
	/	2	биосовместимых материалов.
	8	2	Сравнительная оценка наноматериалов и их свойств для 3D
	0	2	принтинга в медицине.
	9	2	Физические механизмы лазерного создания биосовместимых 3D
		2	материалов.
	10	2	Анализ методов исследования микро- и наноструктуры
	10	2	биосовместимых 3D материалов.
			Зависимость структуры и функциональных свойств
3	11	2	биосовместимых 3D материалов от параметров лазерного
			воздействия.
		2 2	Влияние микро- и наноструктуры и функциональных свойств
	12		биосовместимых 3D материалов на восстановление биологических
	12		тканей.
			Контрольная работа №2.
	13	2	Установки для лазерного восстановления целостности
	13	2	биологических тканей.
	14	2	Материалы для лазерного восстановления целостности
	14	2	биологических тканей.
4	15	2	Мониторинг показателей лазерного воздействия на биологическую
	13	2	ткань при восстановлении ее целостности.
			Перспективы развития лазерного восстановления целостности
	16	2	биологических тканей».
			Научно-технический доклад.

4.3. Лабораторные работы

Не предусмотрены.

4.4. Самостоятельная работа студентов

№ модуля лиспиплины	Объем занятий (часы)	Вид СРС		
		Усвоение материала, изложенного преподавателем.	Работа	co
1	18	специальной научно-технической литературой.		
		Подготовка к контрольной работе № 1.		
		Усвоение материала, изложенного преподавателем.	Работа	co
2	18	специальной научно-технической литературой.		
		Подготовка к контрольной работе № 1.		
3	14	Усвоение материала, изложенного преподавателем.	Работа	co
3	14	специальной научно-технической литературой.		

		Подготовка к контрольной работе № 2.							
		Подготовка к докладу.							
		Подготовка	к научно-тех	ническому докла	аду.				
4	10	Усвоение	материала,	изложенного	преподавателем.	Работа	co		
		специальной научно-технической литературой.							

4.5. Примерная тематика курсовых работ (проектов)

Не предусмотрены.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Учебно-методическое обеспечение для самостоятельной работы студентов в составе УМК дисциплины (ОРИОКС, http://orioks.miet.ru/):

Модуль 1 «Технологи создания трехмерных биосовместимых материалов»

Конспект лекций. Литература Л1 (глава 2: с.21–66); Л2 (глава 1: с.7–19); Л3 (глава 11: с.407–443); Л4 (глава 11: с.407–443);

Модуль 2 «Лазерные методы создания биосовместимых наноматериалов»

Конспект лекций. Литература Л3 (глава 11: с.407–443); Л4 (глава 1: с.7–30; глава 2: с.30–47).

Модуль 3 «Структурные и функциональные свойства биосовместимых наноматериалов»

Конспект лекций. Литература Л5 (глава 1: с.17–34; глава 3: с.85–136; глава 4: с.139–186).

Модуль 4 «Лазерное восстановление целостности биологических тканей»

Конспект лекций. Литература Л6 (глава 1: с.8–28; глава 2: с.28–74; глава 4: с.102–146); Л2 (глава 2: с.20–43; глава 3: с.47–54; глава 3: с.55–70).

6. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ

Литература

- 1. Герасименко А.Ю. Биологические и биосовместимые материалы : Учеб. пособие / А.Ю. Герасименко, И.В. Пьянов; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2015. 68 с. ISBN 978-5-7256-0783-3
- 2. Герасименко А.Ю. Лазерная инженерия биосовместимых материалов : Учеб. пособие / А.Ю. Герасименко; Министерство образования и науки РФ, Национальный исследовательский университет "МИЭТ". М.: МИЭТ, 2017. 72 с. ISBN 978-5-7256-0848-9
- 3.Нанотехнологии в электронике. Вып. 2 / Под ред. Ю.А. Чаплыгина. М. : Техносфера, 2013. 688 с.
- 4. Беликов А.В. Теоретические и экспериментальные основы лазерной абляции биоматериалов: Учеб. пособие / А.В. Беликов, А.Е. Пушкарева, А.В. Скрипник. СПб.: СПбГУ ИТМО, 2011. 118 с. URL: http://window.edu.ru/resource/392/73392 (дата обращения: 21.09.2020). Текст: электронный.

- 5. Харрис П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века = Carbon Nanotubes and Related Structures. New Materials for the Twenty / Harris P. first Century. Cambridge University Press: Пер. с англ. / П. Харрис. М.: Техносфера, 2003. 356 с. ISBN 5-94836-013-X.
- 6.Неворотин А.И. Введение в лазерную хирургию : Учеб. пособие / А.И. Неворотин. СПб. : СпецЛит, 2000. 175 с. ISBN 5-263-00121-5.

Периодические издания

- 1.МЕДИЦИНСКАЯ ТЕХНИКА: Научно-технический журнал / Союз общественных объединений "Международное научно-техническое общество приборостроителей и метрологов" (СОО МНТО ПМ); Гл. ред. С.В. Селищев. М.: Медицина, 1967 . ISSN 0025-8075. Текст: непосредственный.
- 2.БИОМЕДИЦИНСКАЯ РАДИОЭЛЕКТРОНИКА: Международный научноприкладной журнал / Издательство "Радиотехника". - М.: Радиотехника, 1998. - . - ISSN 1560-4136. – Текст: непосредственный.
- 3.КВАНТОВАЯ ЭЛЕКТРОНИКА: Научно-прикладной журнал / Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук М.: ФИАН, 1971. . ISSN 0368-7147. URL: https://lib.rucont.ru/efd/655833/info (дата обращения: 15.09.2020). Режим доступа: для зарегистрир. пользователей МИЭТ по подписке с 2020 г.

7. ПЕРЕЧЕНЬ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ, ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1.eLIBRARY.RU : научная электронная библиотека : сайт. Москва, 2000. URL: http://www.elibrary.ru/ (дата обращения: 25.09.2020). Режим доступа: для зарегистрир. пользователей.
- 2. Scopus: экспертно кураторская база данных рефератов и цитат: сайт. Elsevier, 2020. URL: http://www.scopus.com (дата обращения: 25.09.2020). Режим доступа: для зарегистрир. пользователей.
- 3. Web of Science: поисковая интернет-платформа: сайт. Clarivate, 2016 URL: https://clarivate.com/products/web-of-science/ (дата обращения: 25.09.2020). Режим доступа: для зарегистрир. пользователей.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Для взаимодействия преподавателей и студентов используются модули «Новости» и «Обратная связь» электронной информационно-образовательной среды ОРИОКС, а также электронная почта.

При проведении занятий и для самостоятельной работы используются внутренние электронные ресурсы в среде OPИОКС (http://orioks.miet.ru/).

При необходимости дисциплина может быть реализована частично или полностью с применением дистанционных образовательных технологий. Лекционные и практические занятия, а также назначенные при необходимости консультации проходят с использованием интернет-сервисов видеоконференций (Zoom, Skype) и голосового чата

(Discord). Промежуточная аттестация проводится с использованием интернет-сервисов видеоконференций (Zoom, Skype) и голосового чата (Discord).

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность учебных аудиторий и помещений для самостоятельной работы	Перечень программного обеспечения
Учебная аудитория	Мультимедийное оборудование	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Chrome); Acrobat reader DC
Помещение для самостоятельной работы	Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду МИЭТ	Операционная система Microsoft Windows от 7 версии и выше, Microsoft Office Professional Plus или Open Office, браузер (Firefox, Google Chrome); Acrobat reader DC

10. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕРКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ/ПОДКОМПЕТЕНЦИЙ

ФОС по подкомпетенции ПК-1.ЛИБМ «Способен определять требования и условия для создания биосовместимых материалов лазерными методами».

Фонд оценочных средств представлен отдельным документом и размещен в составе УМК дисциплины электронной информационной образовательной среды OPИOKC// URL: http://orioks.miet.ru/.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

11.1. Особенности организации процесса обучения

Посещение лекций и практических занятий обязательно. Лекционный курс проводится в пассивной форме — в данном случае студенты выступают в роли обучаемых, которые овладевают материалом или воспроизводят его за преподавателем. Лекции являются научным и информативным материалом, с доказательными и аргументированными данными, обоснованными различными фактами и убедительными примерами. Лекции сопровождаются (иллюстрируются) мультимедийными материалами: презентациями, включающими в себя изображения, графики, таблицы; интернет сайтами, видео- или аудиороликами, демонстрационными программами и т.п.

Практические занятия происходят в активной и интерактивной форме, где студенты выступают в роли обучающихся, выполняющих творческие задания (подготовка научно-

технических докладов с презентациями) и взаимодействующих как с преподавателем (активная форма), так и друг с другом и преподавателем (интерактивная форма) посредством диалога.

Самостоятельная работа студента по модулям включает в себя усвоение теоретического материала (полученного в ходе лекционных занятий), подготовка к контрольным мероприятиям дисциплины, подготовка научно-технических докладов и презентаций (работа с научными информационными источниками), а также анализ информации, полученной при изложении докладов другими студентами группы. Самостоятельная работа не ограничивается только изучением материала, полученного в рамках курса. Во время подготовки к контрольным мероприятиям или поиска литературы по дисциплине студент повторяет материал, полученный на занятиях, а также находит новый материал по заинтересовавшей его теме.

Дополнительной формой контактной работы являются консультации. Консультации проводятся лектором по мере необходимости, их посещать необязательно.

12.2. Система контроля и оценивания

Для оценки успеваемости студентов по дисциплине используется накопительная балльная система. По сумме баллов выставляется итоговая оценка по дисциплине. Структура и график контрольных мероприятий доступен в OPИОКС// URL: http://orioks.miet.ru/.

Мониторинг успеваемости студентов проводится в течение семестра трижды: по итогам 8, 12 и 16 учебной недели.

При выставлении итоговой оценки используется шкала, приведенная в таблице:

Сумма баллов	Оценка	
Менее 50	2	
50 – 69	3	
70 – 85	4	
86 – 100	5	

РАЗРАБОТЧИК:

доцент института БМС, к.ф.-м.н., доцент

/А.Ю. Герасименко/

Рабочая программа дисциплины «Лазерная инженерия биосовместимых материалов» по направлению подготовки 12.04.04 «Биотехнические системы и технологии», направленности (профилю) «Персонализированные, носимые имплантируемые биомедицинские системы» разработана в Институте БМС и утверждена на заседании УС Института БМС 16 **МХОТОК** 2010 года, протокол № 11.

Зам. директора по образовательной деятельности Института БМС

/Д.А. Потапов/

ЛИСТ СОГЛАСОВАНИЯ

Рабочая	программа	согласована	c	Центром	подготовки	К	аккредитации	И
независимой ог	ценки качести			a				

Начальник АНОК

/И.М. Никулина/

Рабочая программа согласована с библиотекой МИЭТ

Директор библиотеки

Negs____

/ Т.П. Филиппова/